异质结
材料科学
氧化物
氧气
堆积
八面体
离子键合
铁磁性
离子
化学物理
纳米技术
凝聚态物理
结晶学
光电子学
晶体结构
核磁共振
化学
物理
有机化学
冶金
作者
Yongshun Wu,Yang Zhang,Jianbing Zhang,Yingjie Lyu,Cong Li,Sijie Wu,Yupu Wang,Meng Wang,Youwen Long,Tianxiang Nan,Di Yi,Junyi Zhu,Qing He,Shuyun Zhou,Pu Yu
标识
DOI:10.1002/adfm.202407046
摘要
Abstract Complex oxide heterointerfaces and heterostructures have demonstrated enormous emergent phenomena over the last decades, attributed to the reconstructions of mis‐matched crystalline structure, polarity, and spin ordering across the heterointerfaces. This work employs the heterostructures of La 0.7 Sr 0.3 MnO 3 and CaFeO 2.5 as model system to demonstrate an interface‐specific oxygen migration/reconstruction across the interfaces due to the mismatched chemical potential, which dramatically influences the ferromagnetic and electronic states of La 0.7 Sr 0.3 MnO 3 layer. Specifically, the alternative stacking of octahedral ( O h ) and tetrahedral ( T d ) layers in CaFeO 2.5 are used to form two distinct heterointerfaces, namely the O h ‐T d and the O h ‐O h interfaces with the adjacent La 0.7 Sr 0.3 MnO 3 layer. Interestingly, the oxygen ion migrates toward opposite directions across the interface for these two cases, in which the CaFeO 2.5 layer acts as an “oxygen pump” and manipulates the oxygen contents of its adjacent La 0.7 Sr 0.3 MnO 3 layers. Such manipulation leads to a dramatically changed ferromagnetic transition temperature for the heterostructure with the O h ‐T d and O h ‐ O h interface. This work establishes a feasible and efficient strategy to control the oxygen ionic distribution through atomic‐scale interface design and opens up new opportunities to exploit emergent states at the complex oxide heterostructures through selective oxygen ion evolution.
科研通智能强力驱动
Strongly Powered by AbleSci AI