已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Advancing Airfoil Design: A Physics-Inspired Neural Network Model

翼型 人工神经网络 计算机科学 航空航天工程 人工智能 工程类
作者
Can Unlusoy,Bill Maier,Khalil Al Handawi,T. Mathew,Ravichandra Srinivasan,Mathieu Salz,Michael Kokkolaras
标识
DOI:10.1115/gt2024-122682
摘要

Abstract Turbomachines are an integral part of the energy and industrial landscapes, and improvements to their efficiency benefit the environment, profitability of operation, and in turn, society at large. Therefore, the application of advanced methods for rapid design and development of high-performance turbomachinery components is of significant interest. In the past decade, the use of optimization methods has made inroads in improving turbomachinery aerodynamics. Recent advances in machine learning (ML) methods have the potential to augment design systems by providing the ability to explore larger design spaces and generate high-quality initial designs. Physics Informed Neural Networks (PINNs), based on the Navier-Stokes equations, are used to incorporate physical laws into the design process. This approach leverages the power of deep learning while ensuring that the designs conform to fundamental principles of fluid dynamics. The use of Physics Informed Neural Networks (PINNs) not only accelerates the design process by reducing the need for extensive simulations but also improves the accuracy of the designs by ensuring physical consistency as opposed to designs made using Generative Artificial Intelligence (AI) models. However, combining PINNs with Generative AI for airfoil optimization could provide a fruitful avenue in improving compressor blade designs.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
打打应助干净问筠采纳,获得10
刚刚
乐乐应助平淡的帆布鞋采纳,获得10
1秒前
Pepsi发布了新的文献求助10
3秒前
xiaozhao完成签到,获得积分10
3秒前
乐乐应助干净问筠采纳,获得10
7秒前
7秒前
鲁丁丁完成签到 ,获得积分10
9秒前
娜娜发布了新的文献求助10
12秒前
斯文败类应助捏个小雪团采纳,获得10
14秒前
15秒前
华仔应助娜娜采纳,获得10
19秒前
科研通AI5应助干净问筠采纳,获得10
19秒前
20秒前
友好大树发布了新的文献求助30
21秒前
xyydhcg完成签到,获得积分20
22秒前
科研通AI5应助tang采纳,获得10
22秒前
雍雍完成签到 ,获得积分10
25秒前
31秒前
科研通AI5应助冷酸灵采纳,获得10
32秒前
最棒哒完成签到 ,获得积分10
32秒前
希望天下0贩的0应助Echo采纳,获得10
33秒前
疯狂喵完成签到 ,获得积分10
36秒前
Honghao发布了新的文献求助10
38秒前
39秒前
adkdad完成签到,获得积分10
41秒前
冷酸灵发布了新的文献求助10
45秒前
受伤书文完成签到,获得积分10
46秒前
Orange应助yyy采纳,获得10
47秒前
47秒前
老迟到的书雁完成签到 ,获得积分10
50秒前
52秒前
Lucas应助友好大树采纳,获得30
52秒前
53秒前
时尚丹寒完成签到 ,获得积分10
53秒前
西伯利亚大蟑螂完成签到,获得积分20
53秒前
Zn应助swordlee采纳,获得10
54秒前
NiceSunnyDay完成签到 ,获得积分10
54秒前
科研通AI5应助冷酸灵采纳,获得10
54秒前
在水一方应助冷酸灵采纳,获得10
54秒前
天天快乐应助冷酸灵采纳,获得10
54秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555605
求助须知:如何正确求助?哪些是违规求助? 3131310
关于积分的说明 9390527
捐赠科研通 2830903
什么是DOI,文献DOI怎么找? 1556204
邀请新用户注册赠送积分活动 726475
科研通“疑难数据库(出版商)”最低求助积分说明 715803