Gut microbiome profiles to exclude the diagnosis of hepatic encephalopathy in patients with cirrhosis

队列 金标准(测试) 肝性脑病 肝硬化 内科学 前瞻性队列研究 医学 神经心理评估 队列研究 神经心理学 精神科 认知
作者
Jasmohan S. Bajaj,Jacqueline G. O’Leary,Simona Jakab,Andrew Fagan,Masoumeh Sikaroodi,Patrick M. Gillevet
出处
期刊:Gut microbes [Informa]
卷期号:16 (1)
标识
DOI:10.1080/19490976.2024.2392880
摘要

Patients with cirrhosis who have cognitive complaints are presumed to have hepatic encephalopathy (HE), which leads to unwarranted medications while ignoring the underlying disease process causing these complaints. Since neuropsychological testing, the current gold standard for HE diagnosis, is not readily available, an orderable test is needed. We aimed to develop and validate a rapid gut microbiota test to exclude HE and determine stakeholder input on this approach. Stool was collected from two cohorts: a two-center training cohort (n = 305, on/not on HE-related therapy) and a multicenter validation cohort (n = 30, on HE treatment). Stool microbiota was analyzed rapidly using nanopore analysis. Stakeholder (patients and clinicians) needs assessment was evaluated using semi-quantitative questionnaires. In the training cohort, machine learning using neural network identified a 20-species signature that differentiated HE vs no-HE with 84% specificity compared to the gold standard neuropsychological testing. This high specificity persisted regardless of whether patients were on HE-related therapy or not. In the validation cohort, application of this profile led to reevaluation of the HE diagnosis and treatment in > 40% of the patients. This approach was acceptable to patients (Veterans in the validation cohort) and clinician (n = 40 nationwide) stakeholders. We conclude that a machine learning stool signature based on 20 microbial species developed in a training set and validated in a separate multicenter prospective cohort differentiated those with vs. without HE, identified patients misdiagnosed with HE, and was acceptable to patients and clinician stakeholders.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
牟烨伟完成签到,获得积分10
1秒前
kingwill发布了新的文献求助30
1秒前
袁大头发布了新的文献求助10
1秒前
2秒前
2秒前
Stella完成签到,获得积分10
2秒前
HarryMoon完成签到,获得积分10
3秒前
今后应助如风采纳,获得10
3秒前
科研通AI5应助ZIS采纳,获得10
3秒前
Akim应助YULIA采纳,获得30
4秒前
zffang完成签到,获得积分10
5秒前
6秒前
7秒前
7秒前
111完成签到,获得积分10
7秒前
一颗饭团发布了新的文献求助10
8秒前
8秒前
大胆妖孽完成签到,获得积分10
8秒前
5114完成签到,获得积分10
8秒前
思源应助伊酒采纳,获得10
9秒前
11秒前
姜且完成签到 ,获得积分10
11秒前
Louie~发布了新的文献求助10
11秒前
xueshufengbujue完成签到,获得积分10
12秒前
小白发布了新的文献求助10
12秒前
00发布了新的文献求助20
14秒前
14秒前
spring发布了新的文献求助10
14秒前
qin希望应助敬老院N号采纳,获得10
14秒前
15秒前
xyx945发布了新的文献求助10
16秒前
一颗饭团完成签到,获得积分20
16秒前
17秒前
科研通AI5应助马户采纳,获得10
17秒前
Zac应助wr采纳,获得10
18秒前
NexusExplorer应助dsp采纳,获得10
19秒前
qi发布了新的文献求助30
19秒前
Rochmannn发布了新的文献求助30
19秒前
Tina发布了新的文献求助10
20秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
白土三平研究 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3557918
求助须知:如何正确求助?哪些是违规求助? 3132976
关于积分的说明 9400078
捐赠科研通 2833102
什么是DOI,文献DOI怎么找? 1557272
邀请新用户注册赠送积分活动 727153
科研通“疑难数据库(出版商)”最低求助积分说明 716197