Attention Transfer in Heterogeneous Networks Fusion for Drug Repositioning

计算机科学 融合 药物重新定位 人工智能 药品 医学 药理学 哲学 语言学
作者
Xinguo Lu,Fengxu Sun,Jinxin Li,Jingjing Ruan
出处
期刊:IEEE Journal of Biomedical and Health Informatics [Institute of Electrical and Electronics Engineers]
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3486730
摘要

Computational drug repositioning which accelerates the process of drug development is able to reduce the cost in terms of time and money dramatically which brings promising and broad perspectives for the treatment of complex diseases. Heterogeneous networks fusion has been proposed to improve the performance of drug repositioning. Due to the difference and the specificity including the network structure and the biological function among different biological networks, it poses serious challenge on how to represent drug features and construct drug-disease associations in drug repositioning. Therefore, we proposed a novel drug repositioning method (ATDR) that employed attention transfer across different networks constructed by the deeply represented features integrated from biological networks to implement the disease-drug association prediction. Specifically, we first implemented the drug feature characterization with the graph representation of random surfing for different biological networks, respectively. Then, the drug network of deep feature representation was constructed with the aggregated drug informative features acquired by the multi-modal deep autoencoder on heterogeneous networks. Subsequently, we accomplished the drug-disease association prediction by transferring attention from the drug network to the drug-disease interaction network. We performed comprehensive experiments on different datasets and the results illustrated the outperformance of ATDR compared with other baseline methods and the predicted potential drug-disease interactions could aid in the drug development for disease treatments.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
123456完成签到,获得积分10
1秒前
Joshua完成签到,获得积分10
3秒前
4秒前
6秒前
王77完成签到,获得积分10
6秒前
7秒前
7秒前
虚幻紫伊完成签到,获得积分10
9秒前
阿北发布了新的文献求助10
10秒前
nana发布了新的文献求助10
10秒前
星黛Lu完成签到,获得积分10
11秒前
12秒前
wenqin发布了新的文献求助20
12秒前
14秒前
15秒前
shimmer完成签到,获得积分10
15秒前
15秒前
jx完成签到 ,获得积分10
16秒前
yg19960114发布了新的文献求助10
17秒前
哈哈哈哈哈完成签到,获得积分10
17秒前
FashionBoy应助nana采纳,获得10
17秒前
leaves发布了新的文献求助10
18秒前
小黄不慌完成签到,获得积分10
18秒前
Gzl完成签到 ,获得积分10
19秒前
19秒前
调皮盼曼关注了科研通微信公众号
19秒前
JERLY发布了新的文献求助10
20秒前
20秒前
深情安青应助TJC采纳,获得10
21秒前
科研通AI2S应助516采纳,获得10
22秒前
Abdurrahman完成签到,获得积分10
22秒前
香蕉觅云应助Jewl采纳,获得10
23秒前
LU关注了科研通微信公众号
24秒前
long0809完成签到,获得积分10
25秒前
26秒前
泽锦臻完成签到 ,获得积分10
28秒前
29秒前
31秒前
科研通AI2S应助阿北采纳,获得10
32秒前
丘比特应助曹操的曹采纳,获得10
32秒前
高分求助中
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1100
Дружба 友好报 (1957-1958) 1000
The Data Economy: Tools and Applications 1000
Essentials of thematic analysis 700
Mantiden - Faszinierende Lauerjäger – Buch gebraucht kaufen 600
PraxisRatgeber Mantiden., faszinierende Lauerjäger. – Buch gebraucht kaufe 600
A Dissection Guide & Atlas to the Rabbit 600
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3116254
求助须知:如何正确求助?哪些是违规求助? 2766234
关于积分的说明 7686180
捐赠科研通 2421629
什么是DOI,文献DOI怎么找? 1285798
科研通“疑难数据库(出版商)”最低求助积分说明 620144
版权声明 599809