计算机科学
融合
药物重新定位
人工智能
药品
医学
药理学
哲学
语言学
作者
Xinguo Lu,Fengxu Sun,Jinxin Li,Jingjing Ruan
出处
期刊:IEEE Journal of Biomedical and Health Informatics
[Institute of Electrical and Electronics Engineers]
日期:2024-01-01
卷期号:: 1-10
标识
DOI:10.1109/jbhi.2024.3486730
摘要
Computational drug repositioning which accelerates the process of drug development is able to reduce the cost in terms of time and money dramatically which brings promising and broad perspectives for the treatment of complex diseases. Heterogeneous networks fusion has been proposed to improve the performance of drug repositioning. Due to the difference and the specificity including the network structure and the biological function among different biological networks, it poses serious challenge on how to represent drug features and construct drug-disease associations in drug repositioning. Therefore, we proposed a novel drug repositioning method (ATDR) that employed attention transfer across different networks constructed by the deeply represented features integrated from biological networks to implement the disease-drug association prediction. Specifically, we first implemented the drug feature characterization with the graph representation of random surfing for different biological networks, respectively. Then, the drug network of deep feature representation was constructed with the aggregated drug informative features acquired by the multi-modal deep autoencoder on heterogeneous networks. Subsequently, we accomplished the drug-disease association prediction by transferring attention from the drug network to the drug-disease interaction network. We performed comprehensive experiments on different datasets and the results illustrated the outperformance of ATDR compared with other baseline methods and the predicted potential drug-disease interactions could aid in the drug development for disease treatments.
科研通智能强力驱动
Strongly Powered by AbleSci AI