已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Robustness of AI-based weather forecasts in a changing climate

稳健性(进化) 气候变化 气候学 计算机科学 天气预报 气候模式 气象学 地理 地质学 生物化学 基因 海洋学 化学
作者
Thomas Rackow,Nikolay Koldunov,Christian Lessig,Irina Sandu,Mihai Alexe,Matthew Chantry,Mariana Clare,Jesper Dramsch,Florian Pappenberger,Xabier Pedruzo‐Bagazgoitia,Steffen Tietsche,Thomas Jung
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.18529
摘要

Data-driven machine learning models for weather forecasting have made transformational progress in the last 1-2 years, with state-of-the-art ones now outperforming the best physics-based models for a wide range of skill scores. Given the strong links between weather and climate modelling, this raises the question whether machine learning models could also revolutionize climate science, for example by informing mitigation and adaptation to climate change or to generate larger ensembles for more robust uncertainty estimates. Here, we show that current state-of-the-art machine learning models trained for weather forecasting in present-day climate produce skillful forecasts across different climate states corresponding to pre-industrial, present-day, and future 2.9K warmer climates. This indicates that the dynamics shaping the weather on short timescales may not differ fundamentally in a changing climate. It also demonstrates out-of-distribution generalization capabilities of the machine learning models that are a critical prerequisite for climate applications. Nonetheless, two of the models show a global-mean cold bias in the forecasts for the future warmer climate state, i.e. they drift towards the colder present-day climate they have been trained for. A similar result is obtained for the pre-industrial case where two out of three models show a warming. We discuss possible remedies for these biases and analyze their spatial distribution, revealing complex warming and cooling patterns that are partly related to missing ocean-sea ice and land surface information in the training data. Despite these current limitations, our results suggest that data-driven machine learning models will provide powerful tools for climate science and transform established approaches by complementing conventional physics-based models.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
3秒前
搜集达人应助feifei采纳,获得10
4秒前
科研通AI2S应助pwy采纳,获得10
7秒前
小张完成签到 ,获得积分10
7秒前
乐观凝冬发布了新的文献求助10
8秒前
柯语雪完成签到 ,获得积分10
9秒前
漂亮忆南完成签到 ,获得积分10
11秒前
zyjsunye完成签到 ,获得积分0
11秒前
13秒前
15秒前
21秒前
丁丁完成签到,获得积分10
22秒前
赘婿应助xybjt采纳,获得10
26秒前
KSDalton发布了新的文献求助10
27秒前
思源应助dede采纳,获得10
29秒前
29秒前
shame完成签到 ,获得积分10
31秒前
31秒前
32秒前
37秒前
麻瓜完成签到,获得积分10
38秒前
39秒前
40秒前
一一一多完成签到 ,获得积分10
42秒前
kkscanl完成签到 ,获得积分10
45秒前
啦啦发布了新的文献求助10
45秒前
eurhfe完成签到,获得积分10
45秒前
胡姐姐发布了新的文献求助10
46秒前
tttt完成签到 ,获得积分10
46秒前
楠楠2001完成签到 ,获得积分10
47秒前
48秒前
矮小的盼夏完成签到 ,获得积分10
53秒前
无花果应助胡姐姐采纳,获得10
54秒前
JD.发布了新的文献求助10
55秒前
Dopamine完成签到,获得积分10
56秒前
59秒前
59秒前
JD.完成签到,获得积分20
1分钟前
只如初完成签到,获得积分10
1分钟前
Pikno123应助可靠的煎蛋采纳,获得10
1分钟前
高分求助中
Earth System Geophysics 1000
Semiconductor Process Reliability in Practice 650
Studies on the inheritance of some characters in rice Oryza sativa L 600
Medicina di laboratorio. Logica e patologia clinica 600
《关于整治突出dupin问题的实施意见》(厅字〔2019〕52号) 500
Mathematics and Finite Element Discretizations of Incompressible Navier—Stokes Flows 500
Language injustice and social equity in EMI policies in China 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3207671
求助须知:如何正确求助?哪些是违规求助? 2856984
关于积分的说明 8108052
捐赠科研通 2522527
什么是DOI,文献DOI怎么找? 1355756
科研通“疑难数据库(出版商)”最低求助积分说明 642234
邀请新用户注册赠送积分活动 613602