Robustness of AI-based weather forecasts in a changing climate

稳健性(进化) 气候变化 气候学 计算机科学 天气预报 气候模式 气象学 地理 地质学 生物化学 化学 海洋学 基因
作者
Thomas Rackow,Nikolay Koldunov,Christian Lessig,Irina Sandu,Mihai Alexe,Matthew Chantry,Mariana Clare,Jesper Dramsch,Florian Pappenberger,Xabier Pedruzo‐Bagazgoitia,Steffen Tietsche,Thomas Jung
出处
期刊:Cornell University - arXiv
标识
DOI:10.48550/arxiv.2409.18529
摘要

Data-driven machine learning models for weather forecasting have made transformational progress in the last 1-2 years, with state-of-the-art ones now outperforming the best physics-based models for a wide range of skill scores. Given the strong links between weather and climate modelling, this raises the question whether machine learning models could also revolutionize climate science, for example by informing mitigation and adaptation to climate change or to generate larger ensembles for more robust uncertainty estimates. Here, we show that current state-of-the-art machine learning models trained for weather forecasting in present-day climate produce skillful forecasts across different climate states corresponding to pre-industrial, present-day, and future 2.9K warmer climates. This indicates that the dynamics shaping the weather on short timescales may not differ fundamentally in a changing climate. It also demonstrates out-of-distribution generalization capabilities of the machine learning models that are a critical prerequisite for climate applications. Nonetheless, two of the models show a global-mean cold bias in the forecasts for the future warmer climate state, i.e. they drift towards the colder present-day climate they have been trained for. A similar result is obtained for the pre-industrial case where two out of three models show a warming. We discuss possible remedies for these biases and analyze their spatial distribution, revealing complex warming and cooling patterns that are partly related to missing ocean-sea ice and land surface information in the training data. Despite these current limitations, our results suggest that data-driven machine learning models will provide powerful tools for climate science and transform established approaches by complementing conventional physics-based models.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
现代的访曼应助XT666采纳,获得20
刚刚
聪明的代容完成签到,获得积分10
刚刚
会飞的猪发布了新的文献求助10
1秒前
哈哈哈哈发布了新的文献求助10
1秒前
健忘远山完成签到,获得积分10
1秒前
Peter_Zhu发布了新的文献求助10
2秒前
臭小子发布了新的文献求助10
2秒前
2秒前
FashionBoy应助晚心采纳,获得10
3秒前
LXY171发布了新的文献求助20
3秒前
6秒前
YixiaoWang完成签到,获得积分20
8秒前
苏苏完成签到,获得积分10
8秒前
小魔女完成签到,获得积分10
10秒前
善学以致用应助东方越彬采纳,获得20
10秒前
10秒前
10秒前
11秒前
11秒前
牛牛发布了新的文献求助10
11秒前
zxy应助zianlai采纳,获得10
12秒前
桐桐应助忧郁的猕猴桃采纳,获得10
12秒前
科目三应助YAMO一采纳,获得10
13秒前
苏苏发布了新的文献求助20
14秒前
达克赛德发布了新的文献求助10
14秒前
Peter_Zhu完成签到,获得积分10
14秒前
脑洞疼应助热情起眸采纳,获得10
14秒前
Sy发布了新的文献求助10
15秒前
瘦瘦语蕊发布了新的文献求助10
16秒前
16秒前
慕青应助柳大宝采纳,获得10
17秒前
爱大美完成签到,获得积分10
17秒前
李子发布了新的文献求助10
17秒前
XJ发布了新的文献求助10
18秒前
19秒前
独孤骄子完成签到 ,获得积分0
19秒前
Cell完成签到 ,获得积分10
20秒前
Cell完成签到 ,获得积分10
20秒前
传奇3应助kingjames采纳,获得10
20秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3956520
求助须知:如何正确求助?哪些是违规求助? 3502600
关于积分的说明 11109235
捐赠科研通 3233391
什么是DOI,文献DOI怎么找? 1787343
邀请新用户注册赠送积分活动 870607
科研通“疑难数据库(出版商)”最低求助积分说明 802123