A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: an experimental study

药效团 医学 可解释性 深度学习 机器学习 计算生物学 虚拟筛选 数据挖掘 生物信息学 人工智能 生物 计算机科学
作者
Zheqi Fan,Houming Zhao,Jingcheng Zhou,Dingchang Li,Yunlong Fan,Yiming Bi,Shuaifei Ji
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (12): 7671-7686 被引量:4
标识
DOI:10.1097/js9.0000000000001781
摘要

Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, the authors propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, the authors conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, the authors generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
濮阳盼曼完成签到,获得积分10
1秒前
耍酷的梦桃完成签到,获得积分10
1秒前
求真完成签到,获得积分10
2秒前
roger完成签到,获得积分10
3秒前
科研蜗牛完成签到,获得积分10
3秒前
abcd_1067完成签到,获得积分10
5秒前
cici完成签到 ,获得积分10
6秒前
王金娥完成签到,获得积分10
10秒前
10秒前
Urusaiina完成签到,获得积分10
11秒前
用行舍藏完成签到,获得积分10
11秒前
11秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
旺仔同学完成签到,获得积分10
15秒前
bkagyin应助窗外风雨阑珊采纳,获得10
15秒前
99发布了新的文献求助10
17秒前
aikeyan完成签到 ,获得积分10
17秒前
灰灰发布了新的文献求助10
18秒前
文6完成签到 ,获得积分10
20秒前
苏信怜完成签到,获得积分10
21秒前
细心的安双完成签到 ,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
彭于晏应助科研通管家采纳,获得10
22秒前
Fiona完成签到 ,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
沉静胜完成签到,获得积分10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI6应助科研通管家采纳,获得10
22秒前
科研通AI2S应助科研通管家采纳,获得10
22秒前
arniu2008应助科研通管家采纳,获得10
23秒前
小药童应助科研通管家采纳,获得10
23秒前
23秒前
赘婿应助科研通管家采纳,获得10
23秒前
24秒前
Yangyang完成签到,获得积分10
24秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Digitizing Enlightenment: Digital Humanities and the Transformation of Eighteenth-Century Studies 1000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Real World Research, 5th Edition 680
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 660
Handbook of Migration, International Relations and Security in Asia 555
Between high and low : a chronology of the early Hellenistic period 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5671607
求助须知:如何正确求助?哪些是违规求助? 4920377
关于积分的说明 15135208
捐赠科研通 4830460
什么是DOI,文献DOI怎么找? 2587117
邀请新用户注册赠送积分活动 1540692
关于科研通互助平台的介绍 1499071