A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: an experimental study

药效团 医学 可解释性 深度学习 机器学习 计算生物学 虚拟筛选 数据挖掘 生物信息学 人工智能 生物 计算机科学
作者
Zheqi Fan,Houming Zhao,Jingcheng Zhou,Dingchang Li,Yunlong Fan,Yiming Bi,Shuaifei Ji
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (12): 7671-7686 被引量:4
标识
DOI:10.1097/js9.0000000000001781
摘要

Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, the authors propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, the authors conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, the authors generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科研通AI6.1应助LK采纳,获得30
刚刚
内向忆南完成签到,获得积分10
1秒前
卷卷516发布了新的文献求助10
1秒前
Criminology34应助激昂的飞松采纳,获得10
2秒前
文静梦芝发布了新的文献求助10
3秒前
科研通AI2S应助高高手采纳,获得10
3秒前
谦让时光完成签到 ,获得积分10
3秒前
heisebeileimao应助long采纳,获得50
3秒前
酷波er应助暗暗搁浅采纳,获得10
3秒前
6秒前
暮色晚钟完成签到,获得积分10
7秒前
7秒前
领导范儿应助LWJ采纳,获得10
7秒前
7秒前
彭于晏应助清风采纳,获得10
7秒前
穆清完成签到,获得积分10
9秒前
bkagyin应助Galen采纳,获得10
9秒前
蟒玉朝天完成签到 ,获得积分10
9秒前
Market123580完成签到 ,获得积分10
9秒前
充电宝应助文静梦芝采纳,获得10
10秒前
研友_VZG7GZ应助shukq采纳,获得10
10秒前
10秒前
漂亮的黑猫完成签到,获得积分10
10秒前
知虾关注了科研通微信公众号
10秒前
科研通AI6.1应助素衣采纳,获得10
11秒前
jeff发布了新的文献求助10
11秒前
12秒前
12秒前
12秒前
嗒嗒发布了新的文献求助10
12秒前
13秒前
Treasure发布了新的文献求助10
13秒前
Hello应助WY采纳,获得10
13秒前
留胡子的裘完成签到 ,获得积分10
14秒前
漂亮的如花完成签到,获得积分10
14秒前
15秒前
量子星尘发布了新的文献求助10
15秒前
赵翊发布了新的文献求助10
16秒前
17秒前
CipherSage应助dddddddd采纳,获得30
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5785018
求助须知:如何正确求助?哪些是违规求助? 5684842
关于积分的说明 15466115
捐赠科研通 4913942
什么是DOI,文献DOI怎么找? 2645068
邀请新用户注册赠送积分活动 1592871
关于科研通互助平台的介绍 1547270