A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: A experimental study

药效团 医学 可解释性 深度学习 机器学习 计算生物学 虚拟筛选 数据挖掘 生物信息学 人工智能 生物 计算机科学
作者
Zheqi Fan,Houming Zhao,Jingcheng Zhou,Dingchang Li,Yunlong Fan,Yiming Bi,Shuaifei Ji
出处
期刊:International Journal of Surgery [Elsevier]
标识
DOI:10.1097/js9.0000000000001781
摘要

Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, we propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, we conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, we generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
左丘秋尽发布了新的文献求助10
1秒前
勤恳易真发布了新的文献求助10
1秒前
invisiable完成签到,获得积分10
2秒前
xxx完成签到 ,获得积分10
4秒前
Ava应助wang采纳,获得10
4秒前
土豆泥拌土豆块完成签到 ,获得积分10
5秒前
5秒前
choaznu完成签到 ,获得积分10
7秒前
7秒前
馥日祎完成签到,获得积分20
7秒前
无奈的问安完成签到,获得积分10
8秒前
hello_25baby完成签到,获得积分10
9秒前
9秒前
jjjjjjjj完成签到,获得积分0
9秒前
11秒前
山楂发布了新的文献求助10
12秒前
xx发布了新的文献求助10
12秒前
13秒前
14秒前
yzee完成签到,获得积分10
14秒前
小墨应助chenyunxia采纳,获得10
17秒前
wang发布了新的文献求助10
17秒前
18秒前
爱学习完成签到,获得积分10
19秒前
22秒前
22秒前
22秒前
23秒前
lucky完成签到,获得积分20
23秒前
lin完成签到 ,获得积分10
23秒前
24秒前
24秒前
ls完成签到,获得积分10
26秒前
27秒前
小巧的柏柳完成签到 ,获得积分10
28秒前
科目三应助灵巧的诗筠采纳,获得10
28秒前
小盘子发布了新的文献求助10
29秒前
考博圣体完成签到 ,获得积分10
29秒前
王博士完成签到 ,获得积分10
30秒前
Ava应助daheeeee采纳,获得10
31秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3148139
求助须知:如何正确求助?哪些是违规求助? 2799228
关于积分的说明 7833916
捐赠科研通 2456390
什么是DOI,文献DOI怎么找? 1307237
科研通“疑难数据库(出版商)”最低求助积分说明 628119
版权声明 601655