A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: an experimental study

药效团 医学 可解释性 深度学习 机器学习 计算生物学 虚拟筛选 数据挖掘 生物信息学 人工智能 生物 计算机科学
作者
Zheqi Fan,Houming Zhao,Jingcheng Zhou,Dingchang Li,Yunlong Fan,Yiming Bi,Shuaifei Ji
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (12): 7671-7686 被引量:4
标识
DOI:10.1097/js9.0000000000001781
摘要

Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, the authors propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, the authors conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, the authors generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
WYQ发布了新的文献求助10
1秒前
Wind应助nessa采纳,获得20
1秒前
1秒前
2秒前
千秋叶完成签到 ,获得积分10
2秒前
YAN发布了新的文献求助10
3秒前
3秒前
科目三应助ngsq采纳,获得10
4秒前
gcppa发布了新的文献求助10
5秒前
6秒前
6秒前
6秒前
CipherSage应助长雁采纳,获得10
7秒前
忠嗣院学员完成签到,获得积分10
8秒前
lsw发布了新的文献求助10
9秒前
CipherSage应助五月天采纳,获得10
9秒前
FashionBoy应助王明磊采纳,获得10
10秒前
嘿嘿发布了新的文献求助10
10秒前
研友_wZr5Rn发布了新的文献求助10
12秒前
儒雅三问完成签到 ,获得积分10
13秒前
14秒前
量子星尘发布了新的文献求助10
14秒前
tinner完成签到,获得积分10
15秒前
buno发布了新的文献求助10
16秒前
完美世界应助YCleeeee采纳,获得10
16秒前
汉堡包应助YAN采纳,获得10
16秒前
18秒前
量子星尘发布了新的文献求助10
18秒前
20秒前
桐桐应助3号球衣采纳,获得10
21秒前
21秒前
CCTwoo完成签到,获得积分10
23秒前
挽晨完成签到 ,获得积分10
23秒前
酷波er应助ZKai采纳,获得10
23秒前
关中人完成签到,获得积分10
23秒前
zf2023发布了新的文献求助30
24秒前
可爱的函函应助牛牛采纳,获得10
24秒前
26秒前
28秒前
30秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5705070
求助须知:如何正确求助?哪些是违规求助? 5160498
关于积分的说明 15243798
捐赠科研通 4858886
什么是DOI,文献DOI怎么找? 2607466
邀请新用户注册赠送积分活动 1558571
关于科研通互助平台的介绍 1516188