亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: A experimental study

药效团 医学 可解释性 深度学习 机器学习 计算生物学 虚拟筛选 数据挖掘 生物信息学 人工智能 生物 计算机科学
作者
Zheqi Fan,Houming Zhao,Jingcheng Zhou,Dingchang Li,Yunlong Fan,Yiming Bi,Shuaifei Ji
出处
期刊:International Journal of Surgery [Wolters Kluwer]
标识
DOI:10.1097/js9.0000000000001781
摘要

Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, we propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, we conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, we generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
千里草完成签到,获得积分10
36秒前
量子星尘发布了新的文献求助10
44秒前
科研通AI5应助科研通管家采纳,获得10
2分钟前
2分钟前
李健的粉丝团团长应助lan采纳,获得10
2分钟前
量子星尘发布了新的文献求助10
2分钟前
2分钟前
lan完成签到,获得积分10
2分钟前
陈同学完成签到 ,获得积分10
2分钟前
lan发布了新的文献求助10
2分钟前
chen完成签到 ,获得积分10
2分钟前
sci2025opt完成签到 ,获得积分10
2分钟前
siv完成签到,获得积分10
3分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
3分钟前
科研兵发布了新的文献求助10
3分钟前
天天快乐应助shee采纳,获得10
3分钟前
搜集达人应助科研兵采纳,获得10
3分钟前
insomnia417完成签到,获得积分0
3分钟前
量子星尘发布了新的文献求助10
4分钟前
4分钟前
5分钟前
6分钟前
6分钟前
上官若男应助科研通管家采纳,获得10
6分钟前
朴素易梦发布了新的文献求助30
6分钟前
6分钟前
6分钟前
6分钟前
科研通AI6应助懦弱的丹秋采纳,获得10
6分钟前
量子星尘发布了新的文献求助10
7分钟前
7分钟前
7分钟前
科研通AI2S应助科研通管家采纳,获得10
8分钟前
bkagyin应助科研通管家采纳,获得10
8分钟前
聪明的云完成签到 ,获得积分10
8分钟前
8分钟前
量子星尘发布了新的文献求助10
9分钟前
朴素易梦完成签到,获得积分10
9分钟前
小马甲应助John采纳,获得10
10分钟前
kuoping完成签到,获得积分0
10分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
Comparison of spinal anesthesia and general anesthesia in total hip and total knee arthroplasty: a meta-analysis and systematic review 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4596313
求助须知:如何正确求助?哪些是违规求助? 4008292
关于积分的说明 12409065
捐赠科研通 3687250
什么是DOI,文献DOI怎么找? 2032297
邀请新用户注册赠送积分活动 1065541
科研通“疑难数据库(出版商)”最低求助积分说明 950848