A versatile attention-based neural network for chemical perturbation analysis and its potential to aid surgical treatment: an experimental study

药效团 医学 可解释性 深度学习 机器学习 计算生物学 虚拟筛选 数据挖掘 生物信息学 人工智能 生物 计算机科学
作者
Zheqi Fan,Houming Zhao,Jingcheng Zhou,Dingchang Li,Yunlong Fan,Yiming Bi,Shuaifei Ji
出处
期刊:International Journal of Surgery [Elsevier]
卷期号:110 (12): 7671-7686 被引量:4
标识
DOI:10.1097/js9.0000000000001781
摘要

Deep learning models have emerged as rapid, accurate, and effective approaches for clinical decisions. Through a combination of drug screening and deep learning models, drugs that may benefit patients before and after surgery can be discovered to reduce the risk of complications or speed recovery. However, most existing drug prediction methods have high data requirements and lack interpretability, which has a limited role in adjuvant surgical treatment. To address these limitations, the authors propose the attention-based convolution transpositional interfusion network (ACTIN) for flexible and efficient drug discovery. ACTIN leverages the graph convolution and the transformer mechanism, utilizing drug and transcriptome data to assess the impact of chemical pharmacophores containing certain elements on gene expression. Remarkably, just with only 393 training instances, only one-tenth of the other models, ACTIN achieves state-of-the-art performance, demonstrating its effectiveness even with limited data. By incorporating chemical element embedding disparity and attention mechanism-based parameter analysis, it identifies the possible pharmacophore containing certain elements that could interfere with specific cell lines, which is particularly valuable for screening useful pharmacophores for new drugs tailored to adjuvant surgical treatment. To validate its reliability, the authors conducted comprehensive examinations by utilizing transcriptome data from the lung tissue of fatal COVID-19 patients as additional input for ACTIN, the authors generated novel lead chemicals that align with clinical evidence. In summary, ACTIN offers insights into the perturbation biases of elements within pharmacophore on gene expression, which holds the potential for guiding the development of new drugs that benefit surgical treatment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
建议保存本图,每天支付宝扫一扫(相册选取)领红包
实时播报
yu发布了新的文献求助10
1秒前
1秒前
年123发布了新的文献求助10
3秒前
3秒前
LYDDDDD发布了新的文献求助30
5秒前
打打应助kokok采纳,获得10
5秒前
tuanheqi应助琳琳采纳,获得50
7秒前
铁头关注了科研通微信公众号
7秒前
不摇碧莲完成签到 ,获得积分10
7秒前
7秒前
Jasper应助机智白枫采纳,获得10
10秒前
pinkyy发布了新的文献求助30
10秒前
aa111发布了新的文献求助10
11秒前
11秒前
mochalv123完成签到 ,获得积分10
13秒前
LYDDDDD完成签到,获得积分10
13秒前
汉堡包应助清新的苑博采纳,获得10
14秒前
14秒前
森森发布了新的文献求助10
14秒前
16秒前
NexusExplorer应助11_aa采纳,获得30
16秒前
来一点氧气完成签到,获得积分10
16秒前
qqq发布了新的文献求助10
17秒前
zhang完成签到,获得积分10
17秒前
17秒前
南冥发布了新的文献求助10
19秒前
小二郎应助王博士采纳,获得10
19秒前
科研小新发布了新的文献求助10
20秒前
杏杏发布了新的文献求助10
21秒前
酷波er应助小草三心采纳,获得10
21秒前
三三发布了新的文献求助10
21秒前
kokok发布了新的文献求助10
22秒前
22秒前
23秒前
科研通AI6应助真幽采纳,获得10
24秒前
蛋挞完成签到 ,获得积分10
25秒前
完美世界应助lsc采纳,获得10
26秒前
华仔应助LYDDDDD采纳,获得30
27秒前
爆米花应助虾饺核采纳,获得10
27秒前
香菜发布了新的文献求助10
28秒前
高分求助中
Learning and Memory: A Comprehensive Reference 2000
Predation in the Hymenoptera: An Evolutionary Perspective 1800
List of 1,091 Public Pension Profiles by Region 1541
The Jasper Project 800
Holistic Discourse Analysis 600
Beyond the sentence: discourse and sentential form / edited by Jessica R. Wirth 600
Binary Alloy Phase Diagrams, 2nd Edition 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5502026
求助须知:如何正确求助?哪些是违规求助? 4598072
关于积分的说明 14462410
捐赠科研通 4531657
什么是DOI,文献DOI怎么找? 2483446
邀请新用户注册赠送积分活动 1466888
关于科研通互助平台的介绍 1439496