符号(数学)
非线性系统
对数
数学
数学分析
应用数学
物理
量子力学
出处
期刊:Cornell University - arXiv
日期:2024-07-13
标识
DOI:10.48550/arxiv.2407.09794
摘要
In this paper, we study the discrete logarithmic Kirchhoff equation $$ -\left(a+b \int_{\mathbb{Z}^3}|\nabla u|^{2} d \mu\right) \Delta u+(\lambda h(x)+1) u=|u|^{p-2}u \log u^{2}, \quad x\in \mathbb{Z}^3, $$ where $a,b>0, p>6$ and $\lambda$ is a positive parameter. Under suitable assumptions on $h(x)$, we prove the existence and asymptotic behavior of least energy sign-changing solutions for the equation by the method of Nehari manifold.
科研通智能强力驱动
Strongly Powered by AbleSci AI