Decarboxylative and Decarbonylative Borylation of Carboxylic Acids and Their Derivatives†

化学 硼酸化 脱碳 脱羧 有机化学 药物化学 催化作用 芳基 烷基
作者
Xiaoxian Li,Lipeng Wu
出处
期刊:Chinese Journal of Chemistry [Wiley]
标识
DOI:10.1002/cjoc.202400616
摘要

Comprehensive Summary Boronate esters are highly valued in synthetic and pharmaceutical industries for their versatility in creating C—C and C—X bonds. They also find applications as catalysts in chemical transformations as well as stimuli‐responsive materials in materials science. Some alkyl boronates themselves also show promising applications in medicinal chemistry. In the past few decades, chemists have been devoted to developing new methods or new starting materials for synthesizing boronate esters. Carboxylic acids and their derivatives are privileged chemical entities due to their readily availability or natural abundance, structural diversity, and chemical stability. Hence, the transformation of carboxylic acid and their derivatives to alkyl/aryl boronate esters has seen its fast development in the past decade. This review summarized the state‐to‐art development of decarboxylative and decarbonylative borylation of carboxylic acids and their derivatives to aryl and alkyl boronate esters. Key Scientists The decarboxylative and decarbonylative borylation of carboxylic acids and their derivatives started only in the past decade. In 2016, the decarbonylative borylation of carboxylic esters and amides was reported by Zhuangzhi Shi and Magnus Reuping's groups. Then, in 2017, studies on the decarboxylative borylation of redox‐active esters such as NHPI esters started to receive increasing attention by Aggarwal, Baran, Fu, Glorius, and Li's groups. From 2018 to 2023, large numbers of studies on the decarboxylative and decarbonylative borylation of carboxylic acids and their derivatives using transition‐metal‐catalyst, organo‐catalyst, or under photochemical or electrochemical conditions emerged. Due to space limitations, only pictures of scientists who have contributed more than two works in this area are shown herein.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ding应助好英俊的马铃薯!采纳,获得10
1秒前
z1完成签到,获得积分10
1秒前
雯十七完成签到,获得积分10
1秒前
氼乚发布了新的文献求助10
2秒前
2秒前
默默的月光完成签到,获得积分10
3秒前
我发大文章完成签到,获得积分10
3秒前
Komorebi完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
共享精神应助清客采纳,获得10
4秒前
yzhang发布了新的文献求助10
5秒前
ZSQ完成签到,获得积分10
5秒前
Komorebi发布了新的文献求助10
6秒前
6秒前
7秒前
7秒前
7秒前
7秒前
杨欢完成签到,获得积分20
8秒前
gds2021完成签到,获得积分10
8秒前
Yvonne完成签到,获得积分10
8秒前
仇道罡发布了新的文献求助10
9秒前
堪萧发布了新的文献求助10
9秒前
moonlight发布了新的文献求助10
10秒前
10秒前
lisn发布了新的文献求助10
11秒前
顾矜应助xumengyu采纳,获得10
11秒前
CN柏原崇完成签到,获得积分10
11秒前
Yvonne发布了新的文献求助10
11秒前
酷波er应助林登万采纳,获得10
11秒前
FashionBoy应助林登万采纳,获得10
11秒前
科研小白应助林登万采纳,获得10
11秒前
科研小白应助林登万采纳,获得10
11秒前
英姑应助林登万采纳,获得10
11秒前
ddd发布了新的文献求助10
12秒前
12秒前
pluto应助hotzera采纳,获得10
12秒前
北斗星的爱完成签到,获得积分10
12秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3305612
求助须知:如何正确求助?哪些是违规求助? 2939343
关于积分的说明 8493224
捐赠科研通 2613787
什么是DOI,文献DOI怎么找? 1427585
科研通“疑难数据库(出版商)”最低求助积分说明 663156
邀请新用户注册赠送积分活动 647916