The free energy perturbation (FEP) method is a powerful technique for accurate binding free energy calculations, which is crucial for identifying potent ligands with a high affinity in drug discovery. However, the widespread application of FEP is limited by the high computational cost required to achieve equilibrium sampling and the challenges in obtaining converged predictions. In this study, we present the convergence-adaptive roundtrip (CAR) method, which is an enhanced adaptive sampling approach, to address the key challenges in FEP calculations, including the precision-efficiency tradeoff, sampling efficiency, and convergence assessment. By employing on-the-fly convergence analysis to automatically adjust simulation times, enabling efficient traversal of the important phase space through rapid propagation of conformations between different states and eliminating the need for multiple parallel simulations, the CAR method increases convergence and minimizes computational overhead while maintaining calculation accuracy. The performance of the CAR method was evaluated through relative binding free energy (RBFE) calculations on benchmarks comprising four diverse protein-ligand systems. The results demonstrated a significant speedup of over 8-fold compared to conventional FEP methods while maintaining high accuracy. The overall