BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis

石灰 绿色建筑 建筑工程 计算机科学 环境科学 工程类 材料科学 冶金
作者
Abdul Mateen Khan,Muhammad Abubakar Tariq,Sardar Kashif Ur Rehman,Talha Saeed,Fahad Alqahtani,Mohamed Sherif
出处
期刊:Energies [MDPI AG]
卷期号:17 (13): 3295-3295 被引量:5
标识
DOI:10.3390/en17133295
摘要

Achieving sustainable green building design is essential to reducing our environmental impact and enhancing energy efficiency. Traditional methods often depend heavily on expert knowledge and subjective decisions, posing significant challenges. This research addresses these issues by introducing an innovative framework that integrates building information modeling (BIM), explainable artificial intelligence (AI), and multi-objective optimization. The framework includes three main components: data generation through DesignBuilder simulation, a BO-LGBM (Bayesian optimization–LightGBM) predictive model with LIME (Local Interpretable Model-agnostic Explanations) for energy prediction and interpretation, and the multi-objective optimization technique AGE-MOEA to address uncertainties. A case study demonstrates the framework’s effectiveness, with the BO-LGBM model achieving high prediction accuracy (R-squared > 93.4%, MAPE < 2.13%) and LIME identifying significant HVAC system features. The AGE-MOEA optimization resulted in a 13.43% improvement in energy consumption, CO2 emissions, and thermal comfort, with an additional 4.0% optimization gain when incorporating uncertainties. This study enhances the transparency of machine learning predictions and efficiently identifies optimal passive and active design solutions, contributing significantly to sustainable construction practices. Future research should focus on validating its real-world applicability, assessing its generalizability across various building types, and integrating generative design capabilities for automated optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
脑洞疼应助10采纳,获得10
1秒前
柒柒完成签到,获得积分10
1秒前
zhz发布了新的文献求助10
2秒前
2秒前
YeMa发布了新的文献求助10
2秒前
2秒前
2秒前
学术小白完成签到,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
3秒前
瓜瓜发布了新的文献求助10
4秒前
4秒前
Snoopy_Swan发布了新的文献求助20
4秒前
田様应助Han采纳,获得10
4秒前
彼岸完成签到,获得积分10
5秒前
5秒前
程瑞哲完成签到,获得积分10
5秒前
6秒前
所所应助庚午采纳,获得10
6秒前
yh发布了新的文献求助10
7秒前
7秒前
桃木林发布了新的文献求助10
7秒前
zyfqpc完成签到,获得积分10
7秒前
飘逸的白枫完成签到,获得积分10
7秒前
cc发布了新的文献求助10
8秒前
科目三应助qq大魔王采纳,获得10
8秒前
Rei发布了新的文献求助10
9秒前
9秒前
Liens完成签到,获得积分10
9秒前
9秒前
Boston发布了新的文献求助10
10秒前
里里完成签到,获得积分10
11秒前
11秒前
上转换完成签到,获得积分10
11秒前
11秒前
11秒前
11秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
nephSAP® Nephrology Self-Assessment Program - Hypertension The American Society of Nephrology 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5624314
求助须知:如何正确求助?哪些是违规求助? 4710241
关于积分的说明 14949850
捐赠科研通 4778348
什么是DOI,文献DOI怎么找? 2553236
邀请新用户注册赠送积分活动 1515115
关于科研通互助平台的介绍 1475490