BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis

石灰 绿色建筑 建筑工程 计算机科学 环境科学 工程类 材料科学 冶金
作者
Abdul Mateen Khan,Muhammad Abubakar Tariq,Sardar Kashif Ur Rehman,Talha Saeed,Fahad Alqahtani,Mohamed Sherif
出处
期刊:Energies [MDPI AG]
卷期号:17 (13): 3295-3295 被引量:5
标识
DOI:10.3390/en17133295
摘要

Achieving sustainable green building design is essential to reducing our environmental impact and enhancing energy efficiency. Traditional methods often depend heavily on expert knowledge and subjective decisions, posing significant challenges. This research addresses these issues by introducing an innovative framework that integrates building information modeling (BIM), explainable artificial intelligence (AI), and multi-objective optimization. The framework includes three main components: data generation through DesignBuilder simulation, a BO-LGBM (Bayesian optimization–LightGBM) predictive model with LIME (Local Interpretable Model-agnostic Explanations) for energy prediction and interpretation, and the multi-objective optimization technique AGE-MOEA to address uncertainties. A case study demonstrates the framework’s effectiveness, with the BO-LGBM model achieving high prediction accuracy (R-squared > 93.4%, MAPE < 2.13%) and LIME identifying significant HVAC system features. The AGE-MOEA optimization resulted in a 13.43% improvement in energy consumption, CO2 emissions, and thermal comfort, with an additional 4.0% optimization gain when incorporating uncertainties. This study enhances the transparency of machine learning predictions and efficiently identifies optimal passive and active design solutions, contributing significantly to sustainable construction practices. Future research should focus on validating its real-world applicability, assessing its generalizability across various building types, and integrating generative design capabilities for automated optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
chen完成签到,获得积分10
刚刚
1秒前
cai发布了新的文献求助10
1秒前
魔法披风完成签到,获得积分10
2秒前
乐乐应助嘟嘟嘟嘟嘟采纳,获得10
3秒前
贪玩元晴完成签到,获得积分10
4秒前
4秒前
Lucas应助achen采纳,获得10
4秒前
沉静的友灵完成签到,获得积分10
4秒前
4秒前
小王爱学习完成签到,获得积分10
5秒前
5秒前
5秒前
谦让南烟发布了新的文献求助10
6秒前
7秒前
周雨洁发布了新的文献求助10
7秒前
852应助锦七采纳,获得10
8秒前
深情安青应助霜幕采纳,获得10
8秒前
李爱国应助10711采纳,获得10
9秒前
LLL完成签到 ,获得积分10
9秒前
buno发布了新的文献求助10
9秒前
10秒前
量子星尘发布了新的文献求助10
11秒前
量子星尘发布了新的文献求助10
11秒前
薯薯完成签到,获得积分10
11秒前
xudanhong发布了新的文献求助10
11秒前
不扯先生发布了新的文献求助10
12秒前
13秒前
ma发布了新的文献求助10
14秒前
14秒前
15秒前
Orange应助银鱼在游采纳,获得10
17秒前
Akim应助???采纳,获得30
18秒前
逢亮发布了新的文献求助10
18秒前
任震宇发布了新的文献求助10
18秒前
呓语发布了新的文献求助10
20秒前
20秒前
无花果应助自信的宝贝采纳,获得10
21秒前
酷波er应助花生采纳,获得10
22秒前
23秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 25000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Cambridge History of China: Volume 4, Sui and T'ang China, 589–906 AD, Part Two 1000
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 1000
Russian Foreign Policy: Change and Continuity 800
Real World Research, 5th Edition 800
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5704559
求助须知:如何正确求助?哪些是违规求助? 5158120
关于积分的说明 15242392
捐赠科研通 4858539
什么是DOI,文献DOI怎么找? 2607330
邀请新用户注册赠送积分活动 1558287
关于科研通互助平台的介绍 1516105