亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis

石灰 绿色建筑 建筑工程 计算机科学 环境科学 工程类 材料科学 冶金
作者
Abdul Mateen Khan,Muhammad Abubakar Tariq,Sardar Kashif Ur Rehman,Talha Saeed,Fahad Alqahtani,Mohamed Sherif
出处
期刊:Energies [MDPI AG]
卷期号:17 (13): 3295-3295 被引量:5
标识
DOI:10.3390/en17133295
摘要

Achieving sustainable green building design is essential to reducing our environmental impact and enhancing energy efficiency. Traditional methods often depend heavily on expert knowledge and subjective decisions, posing significant challenges. This research addresses these issues by introducing an innovative framework that integrates building information modeling (BIM), explainable artificial intelligence (AI), and multi-objective optimization. The framework includes three main components: data generation through DesignBuilder simulation, a BO-LGBM (Bayesian optimization–LightGBM) predictive model with LIME (Local Interpretable Model-agnostic Explanations) for energy prediction and interpretation, and the multi-objective optimization technique AGE-MOEA to address uncertainties. A case study demonstrates the framework’s effectiveness, with the BO-LGBM model achieving high prediction accuracy (R-squared > 93.4%, MAPE < 2.13%) and LIME identifying significant HVAC system features. The AGE-MOEA optimization resulted in a 13.43% improvement in energy consumption, CO2 emissions, and thermal comfort, with an additional 4.0% optimization gain when incorporating uncertainties. This study enhances the transparency of machine learning predictions and efficiently identifies optimal passive and active design solutions, contributing significantly to sustainable construction practices. Future research should focus on validating its real-world applicability, assessing its generalizability across various building types, and integrating generative design capabilities for automated optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
我是笨蛋完成签到 ,获得积分10
1秒前
欣喜秋天完成签到,获得积分10
4秒前
乐乐应助andrele采纳,获得10
8秒前
31秒前
1分钟前
朴素千亦完成签到 ,获得积分10
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
2分钟前
3分钟前
科目三应助科研通管家采纳,获得10
3分钟前
烂漫的断秋完成签到 ,获得积分10
3分钟前
4分钟前
andrele完成签到,获得积分10
4分钟前
WILD完成签到 ,获得积分10
4分钟前
4分钟前
andrele发布了新的文献求助10
4分钟前
4分钟前
一粒发布了新的文献求助10
4分钟前
lsl应助yuyy采纳,获得10
4分钟前
4分钟前
LYL完成签到,获得积分10
4分钟前
4分钟前
4分钟前
4分钟前
陳.发布了新的文献求助10
4分钟前
5分钟前
量子星尘发布了新的文献求助10
5分钟前
上官若男应助大晨采纳,获得10
5分钟前
Lucas应助科研通管家采纳,获得10
5分钟前
5分钟前
大晨发布了新的文献求助10
5分钟前
lili发布了新的文献求助10
5分钟前
5分钟前
lili完成签到,获得积分20
6分钟前
cc完成签到,获得积分10
6分钟前
7分钟前
海绵宝宝完成签到 ,获得积分10
7分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
《药学类医疗服务价格项目立项指南(征求意见稿)》 1000
The Political Psychology of Citizens in Rising China 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5634920
求助须知:如何正确求助?哪些是违规求助? 4734247
关于积分的说明 14989490
捐赠科研通 4792667
什么是DOI,文献DOI怎么找? 2559733
邀请新用户注册赠送积分活动 1520066
关于科研通互助平台的介绍 1480128