BIM Integration with XAI Using LIME and MOO for Automated Green Building Energy Performance Analysis

石灰 绿色建筑 建筑工程 计算机科学 环境科学 工程类 材料科学 冶金
作者
Abdul Mateen Khan,Muhammad Abubakar Tariq,Sardar Kashif Ur Rehman,Talha Saeed,Fahad Alqahtani,Mohamed Sherif
出处
期刊:Energies [MDPI AG]
卷期号:17 (13): 3295-3295 被引量:5
标识
DOI:10.3390/en17133295
摘要

Achieving sustainable green building design is essential to reducing our environmental impact and enhancing energy efficiency. Traditional methods often depend heavily on expert knowledge and subjective decisions, posing significant challenges. This research addresses these issues by introducing an innovative framework that integrates building information modeling (BIM), explainable artificial intelligence (AI), and multi-objective optimization. The framework includes three main components: data generation through DesignBuilder simulation, a BO-LGBM (Bayesian optimization–LightGBM) predictive model with LIME (Local Interpretable Model-agnostic Explanations) for energy prediction and interpretation, and the multi-objective optimization technique AGE-MOEA to address uncertainties. A case study demonstrates the framework’s effectiveness, with the BO-LGBM model achieving high prediction accuracy (R-squared > 93.4%, MAPE < 2.13%) and LIME identifying significant HVAC system features. The AGE-MOEA optimization resulted in a 13.43% improvement in energy consumption, CO2 emissions, and thermal comfort, with an additional 4.0% optimization gain when incorporating uncertainties. This study enhances the transparency of machine learning predictions and efficiently identifies optimal passive and active design solutions, contributing significantly to sustainable construction practices. Future research should focus on validating its real-world applicability, assessing its generalizability across various building types, and integrating generative design capabilities for automated optimization.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Shixin发布了新的文献求助10
刚刚
刚刚
1秒前
婷婷的大宝剑完成签到 ,获得积分10
1秒前
氮源完成签到,获得积分10
1秒前
轻飘飘完成签到,获得积分10
1秒前
量子星尘发布了新的文献求助10
1秒前
doing发布了新的文献求助10
1秒前
按时毕业发布了新的文献求助10
2秒前
Stella应助积极的秋尽采纳,获得10
2秒前
123完成签到,获得积分10
2秒前
塵埃发布了新的文献求助10
2秒前
就这样完成签到 ,获得积分10
2秒前
zzzz完成签到,获得积分10
2秒前
2秒前
3秒前
3秒前
3秒前
3秒前
3秒前
一定可以发布了新的文献求助10
4秒前
大个应助卓一曲采纳,获得10
4秒前
LSD完成签到,获得积分10
4秒前
mortal发布了新的文献求助10
4秒前
林狗完成签到,获得积分10
4秒前
上上签发布了新的文献求助10
5秒前
6S6完成签到,获得积分10
5秒前
5秒前
小趴菜发布了新的文献求助10
5秒前
ypp完成签到 ,获得积分10
6秒前
荒年完成签到,获得积分10
6秒前
我爱行楷完成签到,获得积分10
6秒前
敏敏完成签到 ,获得积分10
7秒前
chemistry完成签到,获得积分10
7秒前
马里奥完成签到,获得积分10
7秒前
7秒前
科研通AI2S应助游悠悠采纳,获得10
8秒前
88888888888发布了新的文献求助10
8秒前
RyanNeo完成签到,获得积分10
8秒前
CipherSage应助55555558采纳,获得10
8秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5580050
求助须知:如何正确求助?哪些是违规求助? 4664887
关于积分的说明 14753786
捐赠科研通 4606427
什么是DOI,文献DOI怎么找? 2527694
邀请新用户注册赠送积分活动 1497048
关于科研通互助平台的介绍 1466281