Architecting a Transcriptional Repressor-based Genetic Inverter for Tryptophan Derived Pathway Regulation in Escherichia coli

抑制因子 大肠杆菌 细胞生物学 trp操纵子 化学 色氨酸 生物 遗传学 计算生物学 基因 转录因子 紫胶操纵子 氨基酸
作者
Xinyu Gong,Yuxi Teng,Jianli Zhang,Qi Gan,Ming Song,Ameen Alaraj,Peter Kner,Yajun Yan
出处
期刊:Metabolic Engineering [Elsevier]
标识
DOI:10.1016/j.ymben.2024.09.008
摘要

Efficient microbial cell factories require intricate and precise metabolic regulations for optimized production, which can be significantly aided by implementing regulatory genetic circuits with versatile functions. However, constructing functionally diverse genetic circuits in host strains is challenging. Especially, functional diversification based on transcriptional repressors has been rarely explored due to the difficulty in inverting their repression properties. To address this, we proposed a design logic to create transcriptional repressor-based genetic inverters for functional enrichment. As proof of concept, a tryptophan-inducible genetic inverter was constructed by integrating two sets of transcriptional repressors, PtrpO1-TrpR1 and PtetO1-TetR. In this genetic inverter, the repression of TetR towards PtetO1 could be alleviated by the tryptophan-TrpR1 complex in the presence of tryptophan, leading to the activated output. Subsequently, we optimized the dynamic performance of the inverter and constructed tryptophan-triggered dynamic activation systems. Further coupling of the original repression function of PtrpO1-TrpR1 with inverter variants realized the tryptophan-triggered bifunctional regulation system. Finally, the dynamic regulation systems enabled tryptophan production monitoring. These systems also remarkably increased the titers of the tryptophan derivatives tryptamine and violacein by 2.0-fold and 7.4-fold, respectively. The successful design and application of the genetic inverter enhanced the applicability of transcriptional repressors.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
zky发布了新的文献求助10
1秒前
2秒前
烟花应助草莓养乐多采纳,获得10
4秒前
Loveyou3000times关注了科研通微信公众号
5秒前
匆匆发布了新的文献求助10
5秒前
zhuxu发布了新的文献求助10
6秒前
ddd发布了新的文献求助10
6秒前
FAN发布了新的文献求助10
8秒前
Ziming完成签到,获得积分10
8秒前
cxxxx应助石董宝宝采纳,获得10
8秒前
9秒前
两天浇一次水完成签到 ,获得积分10
9秒前
mitu发布了新的文献求助10
10秒前
Akim应助毅青6796采纳,获得10
12秒前
13秒前
14秒前
zhuxu完成签到,获得积分20
15秒前
16秒前
言成完成签到 ,获得积分10
16秒前
16秒前
852应助空曲采纳,获得10
18秒前
yangcj完成签到,获得积分10
19秒前
1874完成签到 ,获得积分10
20秒前
霸气小懒虫完成签到,获得积分10
20秒前
酷波er应助zhuxu采纳,获得10
21秒前
22秒前
羞涩的贞发布了新的文献求助30
22秒前
22秒前
万能图书馆应助Ziming采纳,获得10
23秒前
xx发布了新的文献求助10
25秒前
25秒前
26秒前
乐橙完成签到 ,获得积分10
27秒前
夹心发布了新的文献求助10
29秒前
耍酷芙蓉完成签到 ,获得积分10
29秒前
32秒前
五十一笑声给yeyuan1017的求助进行了留言
32秒前
33秒前
35秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3146344
求助须知:如何正确求助?哪些是违规求助? 2797778
关于积分的说明 7825411
捐赠科研通 2454118
什么是DOI,文献DOI怎么找? 1306100
科研通“疑难数据库(出版商)”最低求助积分说明 627638
版权声明 601503