材料科学
鱿鱼
弹性体
盐(化学)
复合材料
抗性(生态学)
纳米技术
生态学
有机化学
生物
化学
作者
Chengzhen Chu,Wei Sun,Shuo Chen,Yujie Jia,Yufeng Ni,Shaofan Wang,Yufei Han,Han Zuo,Huifang Chen,Zhengwei You,Meifang Zhu
标识
DOI:10.1002/adma.202406480
摘要
Abstract Cephalopod skins evolve multiple functions in response to environmental adaptation, encompassing nonlinear mechanoreponse, damage tolerance property, and resistance to seawater. Despite tremendous progress in skin‐mimicking materials, the integration of these desirable properties into a single material system remains an ongoing challenge. Here, drawing inspiration from the structure of reflectin proteins in cephalopod skins, a long‐term anti‐salt elastomer with skin‐like nonlinear mechanical properties and extraordinary damage resistance properties is presented. Cation‐π interaction is incorporated to induce the geometrically confined nanophases of hydrogen bond domains, resulting in elastomers with exceptional true tensile strength (456.5 ± 68.9 MPa) and unprecedently high fracture energy (103.7 ± 45.7 kJ m −2 ). Furthermore, the cation‐π interaction effectively protects the hydrogen bond domains from corrosion by high‐concentration saline solution. The utilization of the resultant skin‐like elastomer has been demonstrated by aquatic soft robotics capable of grasping sharp objects. The combined advantages render the present elastomer highly promising for salt enviroment applications, particularly in addressing the challenges posed by sweat, in vivo, and harsh oceanic environments.
科研通智能强力驱动
Strongly Powered by AbleSci AI