Decision Making Under Cumulative Prospect Theory: An Alternating Direction Method of Multipliers

累积前景理论 数学优化 数学 数理经济学 计算机科学 运筹学 期望效用假设
作者
Xiangyu Cui,Rujun Jiang,Yun Shi,Rufeng Xiao,Yifan Yan
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0243
摘要

This paper proposes a novel numerical method for solving the problem of decision making under cumulative prospect theory (CPT), where the goal is to maximize utility subject to practical constraints, assuming only finite realizations of the associated distribution are available. Existing methods for CPT optimization rely on particular assumptions that may not hold in practice. To overcome this limitation, we present the first numerical method with a theoretical guarantee for solving CPT optimization using an alternating direction method of multipliers (ADMM). One of its subproblems involves optimization with the CPT utility subject to a chain constraint, which presents a significant challenge. To address this, we develop two methods for solving this subproblem. The first method uses dynamic programming, whereas the second method is a modified version of the pooling-adjacent-violators algorithm that incorporates the CPT utility function. Moreover, we prove the theoretical convergence of our proposed ADMM method and the two subproblem-solving methods. Finally, we conduct numerical experiments to validate our proposed approach and demonstrate how CPT’s parameters influence investor behavior, using real-world data. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms: Continuous. Funding: This research was supported by the National Natural Science Foundation of China [Grants 12171100, 71971083, and 72171138], the Natural Science Foundation of Shanghai [Grant 22ZR1405100], the Major Program of the National Natural Science Foundation of China [Grants 72394360, 72394364], the Program for Innovative Research Team of Shanghai University of Finance and Economics [Grant 2020110930], Fundamental Research Funds for the Central Universities, and the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science, Ministry of Education, East China Normal University. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0243 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0243 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
充电宝应助健忘的雨安采纳,获得10
1秒前
dfggg发布了新的文献求助10
1秒前
饱满的问丝完成签到,获得积分10
2秒前
3秒前
大水完成签到 ,获得积分10
4秒前
4秒前
Akira完成签到,获得积分20
5秒前
隐形曼青应助是ok耶采纳,获得10
6秒前
7秒前
7秒前
11111发布了新的文献求助20
8秒前
大水发布了新的文献求助10
10秒前
10秒前
小蘑菇应助保持科研热情采纳,获得10
10秒前
所所应助蓦然采纳,获得10
11秒前
11秒前
爱科研的小蜗啊完成签到,获得积分10
12秒前
从容梦山发布了新的文献求助10
12秒前
12秒前
12秒前
量子星尘发布了新的文献求助10
13秒前
13秒前
14秒前
luo完成签到,获得积分10
15秒前
16秒前
HQQ完成签到,获得积分20
16秒前
Ava应助夏洛采纳,获得10
17秒前
小二郎应助violet采纳,获得10
17秒前
乐观的灭绝完成签到,获得积分10
18秒前
文艺大白菜完成签到,获得积分10
18秒前
难过的谷芹应助无为采纳,获得10
18秒前
情怀应助Ljh采纳,获得10
19秒前
20秒前
20秒前
20秒前
赘婿应助秋qiu采纳,获得10
20秒前
21秒前
21秒前
22秒前
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Real World Research, 5th Edition 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5737586
求助须知:如何正确求助?哪些是违规求助? 5373212
关于积分的说明 15335749
捐赠科研通 4880965
什么是DOI,文献DOI怎么找? 2623199
邀请新用户注册赠送积分活动 1572027
关于科研通互助平台的介绍 1528848