Decision Making Under Cumulative Prospect Theory: An Alternating Direction Method of Multipliers

累积前景理论 数学优化 数学 数理经济学 计算机科学 运筹学 期望效用假设
作者
Xiangyu Cui,Rujun Jiang,Yun Shi,Rufeng Xiao,Yifan Yan
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0243
摘要

This paper proposes a novel numerical method for solving the problem of decision making under cumulative prospect theory (CPT), where the goal is to maximize utility subject to practical constraints, assuming only finite realizations of the associated distribution are available. Existing methods for CPT optimization rely on particular assumptions that may not hold in practice. To overcome this limitation, we present the first numerical method with a theoretical guarantee for solving CPT optimization using an alternating direction method of multipliers (ADMM). One of its subproblems involves optimization with the CPT utility subject to a chain constraint, which presents a significant challenge. To address this, we develop two methods for solving this subproblem. The first method uses dynamic programming, whereas the second method is a modified version of the pooling-adjacent-violators algorithm that incorporates the CPT utility function. Moreover, we prove the theoretical convergence of our proposed ADMM method and the two subproblem-solving methods. Finally, we conduct numerical experiments to validate our proposed approach and demonstrate how CPT’s parameters influence investor behavior, using real-world data. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms: Continuous. Funding: This research was supported by the National Natural Science Foundation of China [Grants 12171100, 71971083, and 72171138], the Natural Science Foundation of Shanghai [Grant 22ZR1405100], the Major Program of the National Natural Science Foundation of China [Grants 72394360, 72394364], the Program for Innovative Research Team of Shanghai University of Finance and Economics [Grant 2020110930], Fundamental Research Funds for the Central Universities, and the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science, Ministry of Education, East China Normal University. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0243 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0243 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hcl发布了新的文献求助10
1秒前
2秒前
Orange应助清修采纳,获得10
3秒前
3秒前
3秒前
fuyuan发布了新的文献求助10
6秒前
纱夏完成签到,获得积分10
7秒前
7秒前
7秒前
犹豫的故事完成签到,获得积分10
7秒前
8秒前
猫丫发布了新的文献求助20
8秒前
8秒前
8秒前
田様应助今日采纳,获得10
8秒前
10秒前
10秒前
柚子完成签到,获得积分10
10秒前
xiekai301发布了新的文献求助10
10秒前
11秒前
阿宝的小生活完成签到 ,获得积分10
11秒前
今后应助AM采纳,获得30
11秒前
潇洒的茗茗完成签到 ,获得积分10
11秒前
12秒前
刘欢发布了新的文献求助10
12秒前
zxs完成签到,获得积分10
13秒前
酷酷问雁发布了新的文献求助20
13秒前
醉熏的天薇完成签到,获得积分10
13秒前
13秒前
明天肯定学习完成签到,获得积分20
14秒前
elgar612发布了新的文献求助10
14秒前
Cecilia完成签到,获得积分10
15秒前
dms完成签到,获得积分10
15秒前
16秒前
16秒前
zxs发布了新的文献求助10
17秒前
刻苦惊蛰完成签到 ,获得积分10
17秒前
薛定谔的小猴子完成签到,获得积分10
18秒前
Soin应助wxz1998采纳,获得50
18秒前
缓缓完成签到,获得积分10
19秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
XAFS for Everyone 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3143890
求助须知:如何正确求助?哪些是违规求助? 2795451
关于积分的说明 7815296
捐赠科研通 2451527
什么是DOI,文献DOI怎么找? 1304498
科研通“疑难数据库(出版商)”最低求助积分说明 627251
版权声明 601419