Decision Making Under Cumulative Prospect Theory: An Alternating Direction Method of Multipliers

累积前景理论 数学优化 数学 数理经济学 计算机科学 运筹学 期望效用假设
作者
Xiangyu Cui,Rujun Jiang,Yun Shi,Rufeng Xiao,Yifan Yan
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0243
摘要

This paper proposes a novel numerical method for solving the problem of decision making under cumulative prospect theory (CPT), where the goal is to maximize utility subject to practical constraints, assuming only finite realizations of the associated distribution are available. Existing methods for CPT optimization rely on particular assumptions that may not hold in practice. To overcome this limitation, we present the first numerical method with a theoretical guarantee for solving CPT optimization using an alternating direction method of multipliers (ADMM). One of its subproblems involves optimization with the CPT utility subject to a chain constraint, which presents a significant challenge. To address this, we develop two methods for solving this subproblem. The first method uses dynamic programming, whereas the second method is a modified version of the pooling-adjacent-violators algorithm that incorporates the CPT utility function. Moreover, we prove the theoretical convergence of our proposed ADMM method and the two subproblem-solving methods. Finally, we conduct numerical experiments to validate our proposed approach and demonstrate how CPT’s parameters influence investor behavior, using real-world data. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms: Continuous. Funding: This research was supported by the National Natural Science Foundation of China [Grants 12171100, 71971083, and 72171138], the Natural Science Foundation of Shanghai [Grant 22ZR1405100], the Major Program of the National Natural Science Foundation of China [Grants 72394360, 72394364], the Program for Innovative Research Team of Shanghai University of Finance and Economics [Grant 2020110930], Fundamental Research Funds for the Central Universities, and the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science, Ministry of Education, East China Normal University. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0243 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0243 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
顾矜应助fsxadada123采纳,获得10
刚刚
Owen应助林读书采纳,获得10
刚刚
taotao完成签到,获得积分10
刚刚
1秒前
1秒前
2秒前
onedowmsk完成签到 ,获得积分10
3秒前
3秒前
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
5秒前
尉迟苑博发布了新的文献求助10
5秒前
6秒前
6秒前
Liang完成签到,获得积分20
6秒前
卤鸡腿完成签到,获得积分10
7秒前
溜溜发布了新的文献求助10
7秒前
车访枫完成签到 ,获得积分10
7秒前
阳光襄完成签到,获得积分10
8秒前
xxi发布了新的文献求助10
9秒前
热心凌寒发布了新的文献求助10
11秒前
11秒前
bioseraph完成签到,获得积分10
12秒前
12秒前
科研通AI6应助溜溜采纳,获得10
12秒前
12秒前
大得德发布了新的文献求助10
12秒前
12秒前
黄裕鑫完成签到,获得积分10
13秒前
呆呆完成签到 ,获得积分10
14秒前
小马甲应助浅帅采纳,获得10
14秒前
徐东洋完成签到 ,获得积分10
15秒前
17秒前
黄瓜双耳拌腐竹完成签到,获得积分10
17秒前
彩虹完成签到,获得积分10
18秒前
sidegate发布了新的文献求助10
18秒前
serenity发布了新的文献求助20
18秒前
量子星尘发布了新的文献求助10
18秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Modern Britain, 1750 to the Present (第2版) 300
Writing to the Rhythm of Labor Cultural Politics of the Chinese Revolution, 1942–1976 300
Lightning Wires: The Telegraph and China's Technological Modernization, 1860-1890 250
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4601882
求助须知:如何正确求助?哪些是违规求助? 4011402
关于积分的说明 12419074
捐赠科研通 3691444
什么是DOI,文献DOI怎么找? 2035107
邀请新用户注册赠送积分活动 1068386
科研通“疑难数据库(出版商)”最低求助积分说明 952865