Decision Making Under Cumulative Prospect Theory: An Alternating Direction Method of Multipliers

累积前景理论 数学优化 数学 数理经济学 计算机科学 运筹学 期望效用假设
作者
Xiangyu Cui,Rujun Jiang,Yun Shi,Rufeng Xiao,Yifan Yan
出处
期刊:Informs Journal on Computing
标识
DOI:10.1287/ijoc.2023.0243
摘要

This paper proposes a novel numerical method for solving the problem of decision making under cumulative prospect theory (CPT), where the goal is to maximize utility subject to practical constraints, assuming only finite realizations of the associated distribution are available. Existing methods for CPT optimization rely on particular assumptions that may not hold in practice. To overcome this limitation, we present the first numerical method with a theoretical guarantee for solving CPT optimization using an alternating direction method of multipliers (ADMM). One of its subproblems involves optimization with the CPT utility subject to a chain constraint, which presents a significant challenge. To address this, we develop two methods for solving this subproblem. The first method uses dynamic programming, whereas the second method is a modified version of the pooling-adjacent-violators algorithm that incorporates the CPT utility function. Moreover, we prove the theoretical convergence of our proposed ADMM method and the two subproblem-solving methods. Finally, we conduct numerical experiments to validate our proposed approach and demonstrate how CPT’s parameters influence investor behavior, using real-world data. History: Accepted by Antonio Frangioni, Area Editor for Design & Analysis of Algorithms: Continuous. Funding: This research was supported by the National Natural Science Foundation of China [Grants 12171100, 71971083, and 72171138], the Natural Science Foundation of Shanghai [Grant 22ZR1405100], the Major Program of the National Natural Science Foundation of China [Grants 72394360, 72394364], the Program for Innovative Research Team of Shanghai University of Finance and Economics [Grant 2020110930], Fundamental Research Funds for the Central Universities, and the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science, Ministry of Education, East China Normal University. Supplemental Material: The software that supports the findings of this study is available within the paper and its Supplemental Information ( https://pubsonline.informs.org/doi/suppl/10.1287/ijoc.2023.0243 ) as well as from the IJOC GitHub software repository ( https://github.com/INFORMSJoC/2023.0243 ). The complete IJOC Software and Data Repository is available at https://informsjoc.github.io/ .
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
lyh完成签到,获得积分10
1秒前
1秒前
充电宝应助乏味采纳,获得10
2秒前
2秒前
3秒前
puppy发布了新的文献求助10
4秒前
领导范儿应助jinjin采纳,获得10
5秒前
YifanWang应助plasmid采纳,获得30
5秒前
鱼蛋超人完成签到,获得积分20
5秒前
5秒前
天天快乐应助123采纳,获得10
6秒前
所所应助笑点低芫采纳,获得10
6秒前
天道酬勤完成签到,获得积分10
6秒前
Sun发布了新的文献求助10
6秒前
ssp关闭了ssp文献求助
7秒前
tomorrow发布了新的文献求助10
7秒前
认真的火发布了新的文献求助10
8秒前
9秒前
冷酷鱼完成签到,获得积分10
10秒前
Owen应助牛牛采纳,获得10
10秒前
10秒前
10秒前
英俊水池发布了新的文献求助10
10秒前
10秒前
YY发布了新的文献求助10
10秒前
hucchongzi应助向阳采纳,获得10
11秒前
搜集达人应助Liu采纳,获得10
11秒前
嘟嘟完成签到,获得积分10
13秒前
14秒前
15秒前
艺术家发布了新的文献求助10
15秒前
15秒前
golden完成签到,获得积分10
16秒前
17秒前
彭于彦祖应助178181采纳,获得30
17秒前
上官若男应助要减肥的莛采纳,获得10
17秒前
18秒前
在水一方应助认真的火采纳,获得10
19秒前
19秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3979392
求助须知:如何正确求助?哪些是违规求助? 3523308
关于积分的说明 11217159
捐赠科研通 3260797
什么是DOI,文献DOI怎么找? 1800211
邀请新用户注册赠送积分活动 878960
科研通“疑难数据库(出版商)”最低求助积分说明 807113