Design and optimal scheduling of forecasting-based campus multi-energy complementary energy system

可再生能源 调度(生产过程) 计算机科学 运筹学 帕累托原理 数学优化 工程类 数学 电气工程
作者
Weichao Dong,Hexu Sun,Zheng Li,Huifang Yang
出处
期刊:Energy [Elsevier]
卷期号:309: 133088-133088 被引量:5
标识
DOI:10.1016/j.energy.2024.133088
摘要

This study presents a complete campus multi-energy complementary energy system (MCES), including an accurate forecasting model, efficient MCES model, and effective multi-objective optimal scheduling strategy to better utilize renewable energy. A hybrid forecasting model, including multi-scale mathematical morphological decomposition, a bidirectional long short-term memory network, and subsequences to the original sequence (S2O) manner based on the rolling approach (RA), is utilized to forecast renewable energy variations. RA continuously updates input datasets to improve forecasting accuracy. Decomposition and forecasting modules are employed in an S2O manner to reduce the number of required modules and forecasting cost. The volatility of renewable energy is mitigated by supplementing energy sources with storage. During operation, the conversion times of different energies are reduced by reasonably planning the energy supply sequence based on different loads on the demand side, increasing the energy utilization rate. The proposed multi-objective optimal scheduling strategy includes a stacked multilevel-denoising autoencoder, non-dominated sorting genetic algorithm-II, and deep reinforcement learning (DRL) for surrogate-model building, Pareto frontier establishment, and optimal solution selection. This is the first study to use DRL to select the final optimal solution. A performance comparison confirms the proposed model effectively decreases costs and pollution while increasing thermal comfort.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
斯文败类应助YJ888采纳,获得10
刚刚
刚刚
阔叶材发布了新的文献求助10
刚刚
酷波er应助粗心的忆山采纳,获得10
1秒前
1秒前
1秒前
wangxiaoer发布了新的文献求助10
2秒前
a9902002完成签到,获得积分10
3秒前
36456657应助luluyang采纳,获得10
3秒前
Jasper应助633采纳,获得10
3秒前
薛wen晶完成签到,获得积分10
3秒前
万能图书馆应助六块石头采纳,获得10
3秒前
powder发布了新的文献求助10
4秒前
CipherSage应助曈梦采纳,获得10
4秒前
缪道之完成签到 ,获得积分10
4秒前
FANCY发布了新的文献求助10
4秒前
科研通AI6应助csr采纳,获得10
4秒前
会有椛海吗完成签到,获得积分10
5秒前
5秒前
CipherSage应助端庄白开水采纳,获得10
5秒前
充电宝应助cuidalice采纳,获得80
6秒前
6秒前
wlkk发布了新的文献求助50
6秒前
无花果应助坦率铅笔采纳,获得10
7秒前
7秒前
7秒前
8秒前
wuuToiiin完成签到,获得积分10
8秒前
8秒前
超帅的开山完成签到 ,获得积分10
8秒前
9秒前
9秒前
寻风完成签到,获得积分10
9秒前
9秒前
小王完成签到,获得积分10
10秒前
肉鸡应助刘某采纳,获得30
10秒前
木子李完成签到,获得积分10
11秒前
LL完成签到 ,获得积分10
11秒前
吉77发布了新的文献求助10
12秒前
angela完成签到,获得积分10
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 800
花の香りの秘密―遺伝子情報から機能性まで 800
3rd Edition Group Dynamics in Exercise and Sport Psychology New Perspectives Edited By Mark R. Beauchamp, Mark Eys Copyright 2025 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Terminologia Embryologica 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5618857
求助须知:如何正确求助?哪些是违规求助? 4703798
关于积分的说明 14923864
捐赠科研通 4758637
什么是DOI,文献DOI怎么找? 2550264
邀请新用户注册赠送积分活动 1513097
关于科研通互助平台的介绍 1474401