RS-MAE: Region-State Masked Autoencoder for Neuropsychiatric Disorder Classifications Based on Resting-State fMRI

静息状态功能磁共振成像 功能连接 自编码 心理学 神经科学 医学 计算机科学 人工智能 人工神经网络
作者
Hao Ma,Yongkang Xu,Lixia Tian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3449949
摘要

Dynamic functional connectivity (DFC) extracted from resting-state functional magnetic resonance imaging (fMRI) has been widely used for neuropsychiatric disorder classifications. However, serious information redundancy within DFC matrices can significantly undermine the performance of classification models based on them. Moreover, traditional deep models cannot adapt well to connectivity-like data, and insufficient training samples further hinder their effective training. In this study, we proposed a novel region-state masked autoencoder (RS-MAE) for proficient representation learning based on DFC matrices and ultimately neuropsychiatric disorder classifications based on fMRI. Three strategies were taken to address the aforementioned limitations. First, masked autoencoder (MAE) was introduced to reduce redundancy within DFC matrices and learn effective representations of human brain function simultaneously. Second, region-state (RS) patch embedding was proposed to replace space-time patch embedding in video MAE to adapt to DFC matrices, in which only topological locality, rather than spatial locality, exists. Third, random state concatenation (RSC) was introduced as a DFC matrix augmentation approach, to alleviate the problem of training sample insufficiency. Neuropsychiatric disorder classifications were attained by fine-tuning the pretrained encoder included in RS-MAE. The performance of the proposed RS-MAE was evaluated on four publicly available datasets, achieving accuracies of 76.32%, 77.25%, 88.87%, and 76.53% for the attention deficit and hyperactivity disorder (ADHD), autism spectrum disorder (ASD), Alzheimer's disease (AD), and schizophrenia (SCZ) classification tasks, respectively. These results demonstrate the efficacy of the RS-MAE as a proficient deep learning model for neuropsychiatric disorder classifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
vv123456ha完成签到,获得积分10
3秒前
骑着蚂蚁追大象完成签到,获得积分10
3秒前
4秒前
不配.应助优美的背包采纳,获得10
5秒前
EvY完成签到,获得积分10
5秒前
NeoWu完成签到,获得积分10
5秒前
负责的寒梅完成签到 ,获得积分10
5秒前
6秒前
脑洞疼应助七七采纳,获得10
7秒前
何嘻嘻完成签到,获得积分10
8秒前
1234567xjy完成签到,获得积分10
8秒前
等待的大炮完成签到,获得积分10
9秒前
啊哈完成签到 ,获得积分10
10秒前
10秒前
Ikejima完成签到,获得积分10
11秒前
天意完成签到,获得积分10
11秒前
12秒前
甜甜球完成签到,获得积分10
12秒前
baobeikk发布了新的文献求助10
12秒前
mika888关注了科研通微信公众号
13秒前
Yuan完成签到 ,获得积分0
13秒前
王慧完成签到,获得积分10
14秒前
ziwang完成签到,获得积分10
14秒前
adamchris发布了新的文献求助50
15秒前
16秒前
zy完成签到,获得积分10
17秒前
铁甲小杨完成签到,获得积分10
19秒前
zy发布了新的文献求助10
20秒前
小猪佩琪完成签到,获得积分10
20秒前
轻松笙完成签到,获得积分10
21秒前
baobeikk完成签到,获得积分10
22秒前
Duke_ethan完成签到,获得积分10
22秒前
103921wjk完成签到,获得积分10
22秒前
白日梦小说家完成签到 ,获得积分10
23秒前
Wxx完成签到 ,获得积分10
23秒前
秋澄完成签到 ,获得积分10
23秒前
新八完成签到,获得积分10
23秒前
阿和完成签到,获得积分10
24秒前
Annnn完成签到,获得积分10
25秒前
杀殿完成签到 ,获得积分10
25秒前
高分求助中
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 800
Essentials of thematic analysis 700
A Dissection Guide & Atlas to the Rabbit 600
Very-high-order BVD Schemes Using β-variable THINC Method 568
Внешняя политика КНР: о сущности внешнеполитического курса современного китайского руководства 500
Revolution und Konterrevolution in China [by A. Losowsky] 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3121786
求助须知:如何正确求助?哪些是违规求助? 2772169
关于积分的说明 7711621
捐赠科研通 2427558
什么是DOI,文献DOI怎么找? 1289401
科研通“疑难数据库(出版商)”最低求助积分说明 621451
版权声明 600169