清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

RS-MAE: Region-State Masked Autoencoder for Neuropsychiatric Disorder Classifications Based on Resting-State fMRI

静息状态功能磁共振成像 功能连接 自编码 心理学 神经科学 医学 计算机科学 人工智能 人工神经网络
作者
Hao Ma,Yongkang Xu,Lixia Tian
出处
期刊:IEEE transactions on neural networks and learning systems [Institute of Electrical and Electronics Engineers]
卷期号:: 1-14
标识
DOI:10.1109/tnnls.2024.3449949
摘要

Dynamic functional connectivity (DFC) extracted from resting-state functional magnetic resonance imaging (fMRI) has been widely used for neuropsychiatric disorder classifications. However, serious information redundancy within DFC matrices can significantly undermine the performance of classification models based on them. Moreover, traditional deep models cannot adapt well to connectivity-like data, and insufficient training samples further hinder their effective training. In this study, we proposed a novel region-state masked autoencoder (RS-MAE) for proficient representation learning based on DFC matrices and ultimately neuropsychiatric disorder classifications based on fMRI. Three strategies were taken to address the aforementioned limitations. First, masked autoencoder (MAE) was introduced to reduce redundancy within DFC matrices and learn effective representations of human brain function simultaneously. Second, region-state (RS) patch embedding was proposed to replace space-time patch embedding in video MAE to adapt to DFC matrices, in which only topological locality, rather than spatial locality, exists. Third, random state concatenation (RSC) was introduced as a DFC matrix augmentation approach, to alleviate the problem of training sample insufficiency. Neuropsychiatric disorder classifications were attained by fine-tuning the pretrained encoder included in RS-MAE. The performance of the proposed RS-MAE was evaluated on four publicly available datasets, achieving accuracies of 76.32%, 77.25%, 88.87%, and 76.53% for the attention deficit and hyperactivity disorder (ADHD), autism spectrum disorder (ASD), Alzheimer's disease (AD), and schizophrenia (SCZ) classification tasks, respectively. These results demonstrate the efficacy of the RS-MAE as a proficient deep learning model for neuropsychiatric disorder classifications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
huanghe完成签到,获得积分10
16秒前
DD应助科研通管家采纳,获得10
27秒前
科研通AI2S应助科研通管家采纳,获得10
27秒前
DD应助科研通管家采纳,获得10
27秒前
27秒前
33秒前
完美世界应助shor0414采纳,获得10
43秒前
shor0414完成签到 ,获得积分10
57秒前
1分钟前
wuke发布了新的文献求助30
1分钟前
1分钟前
wuyan204完成签到 ,获得积分10
1分钟前
Mkstar发布了新的文献求助10
1分钟前
量子星尘发布了新的文献求助10
1分钟前
Dawn完成签到,获得积分10
1分钟前
幽默滑板完成签到,获得积分10
1分钟前
huiluowork完成签到 ,获得积分10
1分钟前
月儿完成签到 ,获得积分10
2分钟前
2分钟前
zijingsy完成签到 ,获得积分10
2分钟前
Mkstar完成签到,获得积分10
2分钟前
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
DD应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
flyingpig完成签到,获得积分10
2分钟前
jlwang完成签到,获得积分10
2分钟前
fogsea完成签到,获得积分0
2分钟前
复杂的可乐完成签到 ,获得积分10
3分钟前
胡国伦完成签到 ,获得积分10
3分钟前
骄傲不是与生俱来完成签到,获得积分10
3分钟前
量子星尘发布了新的文献求助10
3分钟前
ZHANG完成签到 ,获得积分10
3分钟前
apt完成签到 ,获得积分10
3分钟前
想写文章的绿完成签到 ,获得积分10
3分钟前
3分钟前
4分钟前
禹山河发布了新的文献求助10
4分钟前
l老王完成签到 ,获得积分10
4分钟前
科研通AI5应助科研通管家采纳,获得30
4分钟前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind (Sixth Edition) 1000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3960142
求助须知:如何正确求助?哪些是违规求助? 3506286
关于积分的说明 11128805
捐赠科研通 3238363
什么是DOI,文献DOI怎么找? 1789709
邀请新用户注册赠送积分活动 871870
科研通“疑难数据库(出版商)”最低求助积分说明 803069