Microbial signatures predictive of short-term prognosis in severe pneumonia

生物 降钙素原 肠球菌 肺炎 内科学 生存分析 肺炎克雷伯菌 微生物学 免疫学 抗生素 败血症 医学 铜绿假单胞菌 细菌 遗传学
作者
Shen-Shen Huang,Jiayong Qiu,S Li,Yaqing Ma,Libin Chen,Lina Han,Long-Long Jiao,Chong Xu,Yimin Mao,Yongmei Zhang
出处
期刊:Frontiers in Cellular and Infection Microbiology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fcimb.2024.1397717
摘要

Objective This retrospective cohort study aimed to investigate the composition and diversity of lung microbiota in patients with severe pneumonia and explore its association with short-term prognosis. Methods A total of 301 patients diagnosed with severe pneumonia underwent bronchoalveolar lavage fluid metagenomic next-generation sequencing (mNGS) testing from February 2022 to January 2024. After applying exclusion criteria, 236 patients were included in the study. Baseline demographic and clinical characteristics were compared between survival and non-survival groups. Microbial composition and diversity were analyzed using alpha and beta diversity metrics. Additionally, LEfSe analysis and machine learning methods were employed to identify key pathogenic microorganism associated with short-term mortality. Microbial interaction modes were assessed through network co-occurrence analysis. Results The overall 28-day mortality rate was 37.7% in severe pneumonia. Non-survival patients had a higher prevalence of hypertension and exhibited higher APACHE II and SOFA scores, higher procalcitonin (PCT), and shorter hospitalization duration. Microbial α and β diversity analysis showed no significant differences between the two groups. However, distinct species diversity patterns were observed, with the non-survival group showing a higher abundance of Acinetobacter baumannii, Klebsiella pneumoniae, and Enterococcus faecium, while the survival group had a higher prevalence of Corynebacterium striatum and Enterobacter. LEfSe analysis identified 29 distinct terms, with 10 potential markers in the non-survival group, including Pseudomonas sp. and Enterococcus durans. Machine learning models selected 16 key pathogenic bacteria, such as Klebsiella pneumoniae, significantly contributing to predicting short-term mortality. Network co-occurrence analysis revealed greater complexity in the non-survival group compared to the survival group, with differences in central genera. Conclusion Our study highlights the potential significance of lung microbiota composition in predicting short-term prognosis in severe pneumonia patients. Differences in microbial diversity and composition, along with distinct microbial interaction modes, may contribute to variations in short-term outcomes. Further research is warranted to elucidate the clinical implications and underlying mechanisms of these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
所所应助等待洙采纳,获得10
刚刚
畅快枕头完成签到 ,获得积分10
2秒前
坦率的傲芙完成签到,获得积分10
2秒前
蝈蝈应助轰车车采纳,获得10
2秒前
2秒前
Insane111发布了新的文献求助60
4秒前
宇文天思发布了新的文献求助10
4秒前
认真天德发布了新的文献求助10
5秒前
斯文败类应助李创业采纳,获得10
5秒前
北执完成签到,获得积分10
5秒前
sx发布了新的文献求助10
5秒前
5秒前
小艾同学完成签到 ,获得积分10
6秒前
帝释天I完成签到,获得积分10
6秒前
火树银花完成签到,获得积分10
6秒前
8秒前
斯文败类应助wymmie采纳,获得10
8秒前
9秒前
Owen应助一百二十一吨采纳,获得10
9秒前
qingzhiwu完成签到,获得积分10
9秒前
高兴的小甜瓜完成签到,获得积分20
9秒前
大喜喜完成签到,获得积分10
10秒前
Nano完成签到,获得积分10
10秒前
Jasper应助微垣采纳,获得10
10秒前
卷心菜完成签到,获得积分10
11秒前
归海梦凡发布了新的文献求助30
11秒前
热心灯泡完成签到,获得积分10
11秒前
糖糖公主完成签到,获得积分10
11秒前
yk1314发布了新的文献求助10
11秒前
11秒前
科目三应助Wilson采纳,获得10
12秒前
LiuHK发布了新的文献求助10
12秒前
14秒前
orixero应助fagfagsf采纳,获得10
14秒前
15秒前
jayus完成签到,获得积分10
15秒前
上官若男应助Nano采纳,获得10
16秒前
咎星完成签到,获得积分10
16秒前
16秒前
文盲完成签到 ,获得积分10
16秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Foreign Policy of the French Second Empire: A Bibliography 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3147394
求助须知:如何正确求助?哪些是违规求助? 2798622
关于积分的说明 7830067
捐赠科研通 2455346
什么是DOI,文献DOI怎么找? 1306770
科研通“疑难数据库(出版商)”最低求助积分说明 627899
版权声明 601587