Microbial signatures predictive of short-term prognosis in severe pneumonia

生物 降钙素原 肠球菌 肺炎 内科学 生存分析 肺炎克雷伯菌 微生物学 免疫学 抗生素 败血症 医学 铜绿假单胞菌 细菌 遗传学
作者
Shen-Shen Huang,Jiayong Qiu,S Li,Yaqing Ma,Libin Chen,Lina Han,Long-Long Jiao,Chong Xu,Yimin Mao,Yongmei Zhang
出处
期刊:Frontiers in Cellular and Infection Microbiology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fcimb.2024.1397717
摘要

Objective This retrospective cohort study aimed to investigate the composition and diversity of lung microbiota in patients with severe pneumonia and explore its association with short-term prognosis. Methods A total of 301 patients diagnosed with severe pneumonia underwent bronchoalveolar lavage fluid metagenomic next-generation sequencing (mNGS) testing from February 2022 to January 2024. After applying exclusion criteria, 236 patients were included in the study. Baseline demographic and clinical characteristics were compared between survival and non-survival groups. Microbial composition and diversity were analyzed using alpha and beta diversity metrics. Additionally, LEfSe analysis and machine learning methods were employed to identify key pathogenic microorganism associated with short-term mortality. Microbial interaction modes were assessed through network co-occurrence analysis. Results The overall 28-day mortality rate was 37.7% in severe pneumonia. Non-survival patients had a higher prevalence of hypertension and exhibited higher APACHE II and SOFA scores, higher procalcitonin (PCT), and shorter hospitalization duration. Microbial α and β diversity analysis showed no significant differences between the two groups. However, distinct species diversity patterns were observed, with the non-survival group showing a higher abundance of Acinetobacter baumannii, Klebsiella pneumoniae, and Enterococcus faecium, while the survival group had a higher prevalence of Corynebacterium striatum and Enterobacter. LEfSe analysis identified 29 distinct terms, with 10 potential markers in the non-survival group, including Pseudomonas sp. and Enterococcus durans. Machine learning models selected 16 key pathogenic bacteria, such as Klebsiella pneumoniae, significantly contributing to predicting short-term mortality. Network co-occurrence analysis revealed greater complexity in the non-survival group compared to the survival group, with differences in central genera. Conclusion Our study highlights the potential significance of lung microbiota composition in predicting short-term prognosis in severe pneumonia patients. Differences in microbial diversity and composition, along with distinct microbial interaction modes, may contribute to variations in short-term outcomes. Further research is warranted to elucidate the clinical implications and underlying mechanisms of these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
微凉发布了新的文献求助10
1秒前
3秒前
Akim应助一个黑熊精采纳,获得10
3秒前
隐形曼青应助llxie采纳,获得10
4秒前
5秒前
shidewu完成签到,获得积分10
6秒前
ZCZD完成签到,获得积分10
7秒前
8秒前
FH挖掘机完成签到 ,获得积分10
8秒前
小蘑菇应助追风采纳,获得10
8秒前
和谐的夏岚完成签到 ,获得积分10
9秒前
所所应助科研通管家采纳,获得10
10秒前
wisdom应助科研通管家采纳,获得10
10秒前
科研通AI2S应助科研通管家采纳,获得10
10秒前
ding应助科研通管家采纳,获得10
10秒前
酷波er应助科研通管家采纳,获得50
10秒前
SciGPT应助科研通管家采纳,获得10
10秒前
英姑应助科研通管家采纳,获得10
10秒前
ED应助科研通管家采纳,获得10
11秒前
深情安青应助科研通管家采纳,获得10
11秒前
小二郎应助科研通管家采纳,获得10
11秒前
11秒前
Owen应助科研通管家采纳,获得10
11秒前
酷波er应助科研通管家采纳,获得10
11秒前
田様应助科研通管家采纳,获得10
11秒前
科目三应助科研通管家采纳,获得10
11秒前
安谣应助科研通管家采纳,获得10
11秒前
华仔应助科研通管家采纳,获得10
11秒前
Wuin应助科研通管家采纳,获得10
11秒前
慕青应助科研通管家采纳,获得10
11秒前
11秒前
所所应助科研通管家采纳,获得10
11秒前
wanci应助科研通管家采纳,获得10
11秒前
wisdom应助科研通管家采纳,获得10
12秒前
Jasper应助科研通管家采纳,获得10
12秒前
12秒前
12秒前
12秒前
12秒前
ED应助科研通管家采纳,获得10
12秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 600
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3966626
求助须知:如何正确求助?哪些是违规求助? 3512100
关于积分的说明 11161688
捐赠科研通 3246938
什么是DOI,文献DOI怎么找? 1793609
邀请新用户注册赠送积分活动 874495
科研通“疑难数据库(出版商)”最低求助积分说明 804420