Microbial signatures predictive of short-term prognosis in severe pneumonia

生物 降钙素原 肠球菌 肺炎 内科学 生存分析 肺炎克雷伯菌 微生物学 免疫学 抗生素 败血症 医学 铜绿假单胞菌 细菌 遗传学
作者
Shen-Shen Huang,Jiayong Qiu,S Li,Yaqing Ma,Libin Chen,Lina Han,Long-Long Jiao,Chong Xu,Yimin Mao,Yongmei Zhang
出处
期刊:Frontiers in Cellular and Infection Microbiology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fcimb.2024.1397717
摘要

Objective This retrospective cohort study aimed to investigate the composition and diversity of lung microbiota in patients with severe pneumonia and explore its association with short-term prognosis. Methods A total of 301 patients diagnosed with severe pneumonia underwent bronchoalveolar lavage fluid metagenomic next-generation sequencing (mNGS) testing from February 2022 to January 2024. After applying exclusion criteria, 236 patients were included in the study. Baseline demographic and clinical characteristics were compared between survival and non-survival groups. Microbial composition and diversity were analyzed using alpha and beta diversity metrics. Additionally, LEfSe analysis and machine learning methods were employed to identify key pathogenic microorganism associated with short-term mortality. Microbial interaction modes were assessed through network co-occurrence analysis. Results The overall 28-day mortality rate was 37.7% in severe pneumonia. Non-survival patients had a higher prevalence of hypertension and exhibited higher APACHE II and SOFA scores, higher procalcitonin (PCT), and shorter hospitalization duration. Microbial α and β diversity analysis showed no significant differences between the two groups. However, distinct species diversity patterns were observed, with the non-survival group showing a higher abundance of Acinetobacter baumannii, Klebsiella pneumoniae, and Enterococcus faecium, while the survival group had a higher prevalence of Corynebacterium striatum and Enterobacter. LEfSe analysis identified 29 distinct terms, with 10 potential markers in the non-survival group, including Pseudomonas sp. and Enterococcus durans. Machine learning models selected 16 key pathogenic bacteria, such as Klebsiella pneumoniae, significantly contributing to predicting short-term mortality. Network co-occurrence analysis revealed greater complexity in the non-survival group compared to the survival group, with differences in central genera. Conclusion Our study highlights the potential significance of lung microbiota composition in predicting short-term prognosis in severe pneumonia patients. Differences in microbial diversity and composition, along with distinct microbial interaction modes, may contribute to variations in short-term outcomes. Further research is warranted to elucidate the clinical implications and underlying mechanisms of these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
hhh完成签到,获得积分10
刚刚
何果果完成签到,获得积分10
刚刚
顾安完成签到 ,获得积分10
1秒前
坚定的可愁完成签到,获得积分10
2秒前
雪城完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
认真子默完成签到,获得积分10
3秒前
3秒前
露似珍珠月似弓完成签到,获得积分10
3秒前
研友_ZGjEKn完成签到,获得积分10
5秒前
feiyang完成签到,获得积分10
5秒前
雪白的冥幽完成签到,获得积分10
5秒前
学渣一枚完成签到 ,获得积分10
5秒前
开朗的踏歌完成签到,获得积分10
5秒前
俭朴的世界完成签到 ,获得积分10
5秒前
小云完成签到,获得积分10
5秒前
CYJ完成签到,获得积分10
5秒前
LYY完成签到,获得积分10
6秒前
沉甸甸完成签到,获得积分10
6秒前
昀松完成签到,获得积分10
6秒前
收到完成签到,获得积分10
7秒前
郭初一完成签到,获得积分0
7秒前
FFFFF完成签到,获得积分10
7秒前
陈c发布了新的文献求助10
8秒前
ZW完成签到,获得积分10
9秒前
LWJ完成签到 ,获得积分10
9秒前
chaohuiwang完成签到,获得积分10
9秒前
高贵的映安完成签到,获得积分10
10秒前
木可完成签到,获得积分10
10秒前
小蜜蜂完成签到,获得积分10
11秒前
maizhenpeng发布了新的文献求助20
11秒前
zzzzzzzp完成签到,获得积分10
11秒前
swsx1317完成签到,获得积分10
11秒前
Simmy完成签到,获得积分10
12秒前
JevonCheung完成签到 ,获得积分10
13秒前
无私半青完成签到,获得积分10
13秒前
flash完成签到,获得积分10
13秒前
Arueliano完成签到,获得积分10
13秒前
科研通AI2S应助流川枫采纳,获得10
14秒前
迷你的雁枫完成签到 ,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
网络安全 SEMI 标准 ( SEMI E187, SEMI E188 and SEMI E191.) 1000
Inherited Metabolic Disease in Adults: A Clinical Guide 500
计划经济时代的工厂管理与工人状况(1949-1966)——以郑州市国营工厂为例 500
INQUIRY-BASED PEDAGOGY TO SUPPORT STEM LEARNING AND 21ST CENTURY SKILLS: PREPARING NEW TEACHERS TO IMPLEMENT PROJECT AND PROBLEM-BASED LEARNING 500
The Pedagogical Leadership in the Early Years (PLEY) Quality Rating Scale 410
Why America Can't Retrench (And How it Might) 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 催化作用 遗传学 冶金 电极 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 4613661
求助须知:如何正确求助?哪些是违规求助? 4018221
关于积分的说明 12437528
捐赠科研通 3700870
什么是DOI,文献DOI怎么找? 2040947
邀请新用户注册赠送积分活动 1073711
科研通“疑难数据库(出版商)”最低求助积分说明 957365