Microbial signatures predictive of short-term prognosis in severe pneumonia

生物 降钙素原 肠球菌 肺炎 内科学 生存分析 肺炎克雷伯菌 微生物学 免疫学 抗生素 败血症 医学 铜绿假单胞菌 细菌 遗传学
作者
Shen-Shen Huang,Jiayong Qiu,S Li,Yaqing Ma,Libin Chen,Lina Han,Long-Long Jiao,Chong Xu,Yimin Mao,Yongmei Zhang
出处
期刊:Frontiers in Cellular and Infection Microbiology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fcimb.2024.1397717
摘要

Objective This retrospective cohort study aimed to investigate the composition and diversity of lung microbiota in patients with severe pneumonia and explore its association with short-term prognosis. Methods A total of 301 patients diagnosed with severe pneumonia underwent bronchoalveolar lavage fluid metagenomic next-generation sequencing (mNGS) testing from February 2022 to January 2024. After applying exclusion criteria, 236 patients were included in the study. Baseline demographic and clinical characteristics were compared between survival and non-survival groups. Microbial composition and diversity were analyzed using alpha and beta diversity metrics. Additionally, LEfSe analysis and machine learning methods were employed to identify key pathogenic microorganism associated with short-term mortality. Microbial interaction modes were assessed through network co-occurrence analysis. Results The overall 28-day mortality rate was 37.7% in severe pneumonia. Non-survival patients had a higher prevalence of hypertension and exhibited higher APACHE II and SOFA scores, higher procalcitonin (PCT), and shorter hospitalization duration. Microbial α and β diversity analysis showed no significant differences between the two groups. However, distinct species diversity patterns were observed, with the non-survival group showing a higher abundance of Acinetobacter baumannii, Klebsiella pneumoniae, and Enterococcus faecium, while the survival group had a higher prevalence of Corynebacterium striatum and Enterobacter. LEfSe analysis identified 29 distinct terms, with 10 potential markers in the non-survival group, including Pseudomonas sp. and Enterococcus durans. Machine learning models selected 16 key pathogenic bacteria, such as Klebsiella pneumoniae, significantly contributing to predicting short-term mortality. Network co-occurrence analysis revealed greater complexity in the non-survival group compared to the survival group, with differences in central genera. Conclusion Our study highlights the potential significance of lung microbiota composition in predicting short-term prognosis in severe pneumonia patients. Differences in microbial diversity and composition, along with distinct microbial interaction modes, may contribute to variations in short-term outcomes. Further research is warranted to elucidate the clinical implications and underlying mechanisms of these findings.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
顺心醉蝶完成签到 ,获得积分10
1秒前
Zhi应助online1881采纳,获得10
1秒前
wwf完成签到,获得积分10
2秒前
生椰拿铁不加生椰完成签到 ,获得积分10
4秒前
稳重的安萱完成签到,获得积分10
4秒前
小宇宙完成签到,获得积分10
5秒前
好好学习完成签到 ,获得积分10
6秒前
7秒前
脱壳金蝉完成签到,获得积分10
9秒前
lmx完成签到,获得积分20
9秒前
清风完成签到 ,获得积分10
10秒前
ding应助霍焱采纳,获得10
12秒前
无情静柏完成签到 ,获得积分20
13秒前
16秒前
彭于晏应助风华采纳,获得10
17秒前
xmhxpz完成签到,获得积分10
17秒前
19秒前
Youngen发布了新的文献求助10
20秒前
22秒前
量子星尘发布了新的文献求助10
23秒前
online1881完成签到,获得积分10
23秒前
会飞的鱼完成签到,获得积分10
26秒前
小余同学完成签到 ,获得积分10
27秒前
吉涛发布了新的文献求助10
28秒前
田...完成签到,获得积分10
28秒前
阔达如柏完成签到,获得积分10
29秒前
wy完成签到,获得积分10
30秒前
Ammon完成签到,获得积分10
31秒前
明理小凝完成签到 ,获得积分10
31秒前
大苗完成签到,获得积分10
33秒前
曾经的凌青完成签到 ,获得积分10
34秒前
35秒前
体贴的手链完成签到,获得积分10
35秒前
35秒前
Youngen完成签到,获得积分10
36秒前
小樊爱摸鱼完成签到,获得积分10
36秒前
37秒前
37秒前
37秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Electron Energy Loss Spectroscopy 1500
Tip-in balloon grenadoplasty for uncrossable chronic total occlusions 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5789530
求助须知:如何正确求助?哪些是违规求助? 5720862
关于积分的说明 15474819
捐赠科研通 4917334
什么是DOI,文献DOI怎么找? 2646933
邀请新用户注册赠送积分活动 1594542
关于科研通互助平台的介绍 1549081