Modeling L2 motivation change and its predictive effects on learning behaviors in the extramural digital context: a quantitative investigation in China

调解 操作化 心理学 对话 背景(考古学) 理想(伦理) 结构方程建模 数学教育 计算机科学 社会学 古生物学 社会科学 哲学 沟通 认识论 机器学习 生物
作者
Guangxiang Liu
出处
期刊:Linguistics vanguard [De Gruyter]
被引量:1
标识
DOI:10.1515/lingvan-2023-0145
摘要

Abstract Language learning in the extramural digital (ED) context has recently gained momentum because it focuses on second language (L2) learners’ autonomous, unstructured, online learning activities beyond the classroom. Drawing upon Dörnyei’s L2 motivational self system (including the ideal L2 self, ought-to L2 self, and L2 learning experience) to operationalize L2 learners’ motivational mindsets, this study aims to investigate whether L2 English learners’ ought-to L2 self can be translated into their ideal L2 self and predict learning behaviors within the ED context. Survey data from 310 undergraduate students in a top-tier Chinese university were collected and analyzed following a structural equation modeling approach. The results indicate that participants’ ought-to L2 self can facilitate the development of their ideal L2 self only through the full mediation effect of the L2 learning experience in the ED environment. Also, while students’ ought-to L2 self cannot directly predict their motivated learning behaviors in the ED context, there exists a significant indirect impact through the joint mediation of the L2 learning experience and ideal L2 self. These findings contribute to the ongoing conversation about L2 motivational dynamics by unveiling the conversion and interaction of different L2 motivational forces in digital and out-of-class settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
HuanchuWang发布了新的文献求助10
1秒前
wanci应助娜行采纳,获得10
2秒前
2秒前
bear完成签到,获得积分10
2秒前
哈123发布了新的文献求助10
2秒前
ws发布了新的文献求助10
3秒前
英姑应助bofu采纳,获得10
3秒前
豆腐青菜雨应助zcx采纳,获得10
3秒前
4秒前
4秒前
yy发布了新的文献求助10
4秒前
阿静发布了新的文献求助10
5秒前
Liuyicong发布了新的文献求助10
5秒前
舒适的晓山完成签到,获得积分10
5秒前
桐桐应助今天不熬夜采纳,获得10
6秒前
CodeCraft应助kkk采纳,获得10
6秒前
venger完成签到,获得积分10
6秒前
8秒前
cyclin9完成签到,获得积分10
8秒前
万能图书馆应助ranj采纳,获得10
9秒前
潇潇微雨完成签到,获得积分10
9秒前
9秒前
pny发布了新的文献求助10
9秒前
9秒前
10秒前
小马甲应助Kathraine采纳,获得10
10秒前
小二郎应助bofu采纳,获得10
11秒前
思源应助尊敬的书本采纳,获得10
11秒前
rcf完成签到,获得积分10
11秒前
科研废物完成签到,获得积分10
11秒前
伯赏烨磊发布了新的文献求助10
12秒前
14秒前
14秒前
FashionBoy应助瘦瘦一德采纳,获得10
14秒前
14秒前
Jcer完成签到,获得积分10
15秒前
15秒前
自强不息发布了新的文献求助30
15秒前
15秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3487464
求助须知:如何正确求助?哪些是违规求助? 3075498
关于积分的说明 9140837
捐赠科研通 2767731
什么是DOI,文献DOI怎么找? 1518729
邀请新用户注册赠送积分活动 703299
科研通“疑难数据库(出版商)”最低求助积分说明 701751