Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients

鉴定(生物学) 血管生成 癌症 医学 内科学 肿瘤科 计算生物学 生物信息学 生物 植物
作者
Jie Luo,Mengyun Liang,Tengfei Ma,Bizhen Dong,Liping Jia,Meifang Su
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:112: 108174-108174
标识
DOI:10.1016/j.compbiolchem.2024.108174
摘要

Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
无花果应助躺平的搬砖人采纳,获得10
刚刚
张北北发布了新的文献求助10
刚刚
mol发布了新的文献求助10
刚刚
科目三应助zph14204采纳,获得10
刚刚
3秒前
3秒前
李大王完成签到 ,获得积分10
3秒前
4秒前
William发布了新的文献求助30
4秒前
skbz完成签到,获得积分10
4秒前
娇娇完成签到,获得积分10
4秒前
5秒前
小池发布了新的文献求助10
5秒前
5秒前
可可布朗尼完成签到,获得积分10
5秒前
鑫问发布了新的文献求助10
5秒前
飘逸曼彤发布了新的文献求助10
6秒前
雪白的诺言完成签到 ,获得积分10
6秒前
Yyyang完成签到,获得积分10
6秒前
懦弱的妙彤完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
赘婿应助mol采纳,获得10
7秒前
量子星尘发布了新的文献求助10
7秒前
Mingda发布了新的文献求助10
8秒前
8秒前
8秒前
无极微光应助jtyt采纳,获得20
8秒前
8秒前
9秒前
9秒前
开放以蓝发布了新的文献求助10
9秒前
10秒前
10秒前
小米应助科研通管家采纳,获得10
10秒前
小米应助科研通管家采纳,获得10
10秒前
情怀应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
领导范儿应助科研通管家采纳,获得10
10秒前
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Quaternary Science Reference Third edition 6000
Encyclopedia of Forensic and Legal Medicine Third Edition 5000
Introduction to strong mixing conditions volume 1-3 5000
Aerospace Engineering Education During the First Century of Flight 3000
Agyptische Geschichte der 21.30. Dynastie 3000
Les Mantodea de guyane 2000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5783854
求助须知:如何正确求助?哪些是违规求助? 5679357
关于积分的说明 15462389
捐赠科研通 4913221
什么是DOI,文献DOI怎么找? 2644567
邀请新用户注册赠送积分活动 1592324
关于科研通互助平台的介绍 1546965