Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients

鉴定(生物学) 血管生成 癌症 医学 内科学 肿瘤科 计算生物学 生物信息学 生物 植物
作者
Jie Luo,Mengyun Liang,Tengfei Ma,Bizhen Dong,Liping Jia,Meifang Su
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:112: 108174-108174
标识
DOI:10.1016/j.compbiolchem.2024.108174
摘要

Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
连衣裙完成签到,获得积分10
刚刚
bb发布了新的文献求助10
1秒前
小杭杭弟完成签到,获得积分10
2秒前
彭于晏应助没有熬夜采纳,获得10
2秒前
3秒前
lv完成签到,获得积分10
3秒前
4秒前
一一发布了新的文献求助10
4秒前
4秒前
5秒前
MarvelerYB3完成签到,获得积分10
5秒前
5秒前
张佳铭完成签到,获得积分10
5秒前
meng完成签到,获得积分10
5秒前
5秒前
6秒前
归尘发布了新的文献求助10
6秒前
灯鸣乃月见完成签到,获得积分20
6秒前
思源应助FOLLOW采纳,获得10
6秒前
科目三应助科研小白采纳,获得10
7秒前
8秒前
专注的猫咪完成签到,获得积分10
8秒前
张佳铭发布了新的文献求助10
8秒前
9秒前
大模型应助非要起名采纳,获得10
9秒前
小小发布了新的文献求助50
9秒前
9秒前
xiexie发布了新的文献求助30
9秒前
团团团子发布了新的文献求助50
10秒前
Riggle G发布了新的文献求助10
11秒前
aimuo发布了新的文献求助10
12秒前
斯文败类应助结实的秋天采纳,获得10
12秒前
bb完成签到,获得积分20
13秒前
脑洞疼应助惠香香的采纳,获得10
13秒前
量子星尘发布了新的文献求助10
13秒前
14秒前
慧妞完成签到 ,获得积分10
15秒前
15秒前
15秒前
15秒前
高分求助中
Theoretical Modelling of Unbonded Flexible Pipe Cross-Sections 10000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Basic And Clinical Science Course 2025-2026 3000
《药学类医疗服务价格项目立项指南(征求意见稿)》 880
花の香りの秘密―遺伝子情報から機能性まで 800
Stop Talking About Wellbeing: A Pragmatic Approach to Teacher Workload 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5615047
求助须知:如何正确求助?哪些是违规求助? 4699915
关于积分的说明 14905878
捐赠科研通 4740995
什么是DOI,文献DOI怎么找? 2547893
邀请新用户注册赠送积分活动 1511680
关于科研通互助平台的介绍 1473726