Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients

鉴定(生物学) 血管生成 癌症 医学 内科学 肿瘤科 计算生物学 生物信息学 生物 植物
作者
Jie Luo,Mengyun Liang,Tengfei Ma,Bizhen Dong,Liping Jia,Meifang Su
出处
期刊:Computational Biology and Chemistry [Elsevier BV]
卷期号:112: 108174-108174
标识
DOI:10.1016/j.compbiolchem.2024.108174
摘要

Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Mojito发布了新的文献求助10
1秒前
1秒前
西原的橙果完成签到,获得积分10
3秒前
Rookie完成签到 ,获得积分10
4秒前
JamesPei应助大利采纳,获得10
4秒前
王文豪发布了新的文献求助10
5秒前
羞涩的曼凡完成签到,获得积分10
6秒前
FloppyWow发布了新的文献求助10
6秒前
长情半邪完成签到 ,获得积分10
7秒前
领导范儿应助MRM采纳,获得10
7秒前
eli完成签到,获得积分10
7秒前
9秒前
闪闪的妙竹给闪闪的妙竹的求助进行了留言
9秒前
9秒前
陈龙完成签到,获得积分10
9秒前
12秒前
李爱国应助王文豪采纳,获得10
12秒前
Emily完成签到,获得积分20
13秒前
替我活着发布了新的文献求助10
13秒前
13秒前
14秒前
士心发布了新的文献求助30
14秒前
15秒前
17秒前
吃猫的鱼发布了新的文献求助10
17秒前
18秒前
无花果应助hyh采纳,获得10
18秒前
Meng发布了新的文献求助10
19秒前
今天只做一件事应助blenx采纳,获得10
19秒前
FloppyWow发布了新的文献求助10
19秒前
19秒前
20秒前
顾矜应助粗心的chen采纳,获得10
21秒前
zhaoming完成签到 ,获得积分10
22秒前
852应助123采纳,获得10
22秒前
缘一发布了新的文献求助10
22秒前
杨枝甘露发布了新的文献求助10
22秒前
威武豌豆发布了新的文献求助10
22秒前
zhc发布了新的文献求助10
23秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
Ophthalmic Equipment Market 1500
Neuromuscular and Electrodiagnostic Medicine Board Review 1000
こんなに痛いのにどうして「なんでもない」と医者にいわれてしまうのでしょうか 510
いちばんやさしい生化学 500
The First Nuclear Era: The Life and Times of a Technological Fixer 500
Unusual formation of 4-diazo-3-nitriminopyrazoles upon acid nitration of pyrazolo[3,4-d][1,2,3]triazoles 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3672461
求助须知:如何正确求助?哪些是违规求助? 3228752
关于积分的说明 9781866
捐赠科研通 2939164
什么是DOI,文献DOI怎么找? 1610648
邀请新用户注册赠送积分活动 760696
科研通“疑难数据库(出版商)”最低求助积分说明 736174