Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients

鉴定(生物学) 血管生成 癌症 医学 内科学 肿瘤科 计算生物学 生物信息学 生物 植物
作者
Jie Luo,Mengyun Liang,Tengfei Ma,Bizhen Dong,Liping Jia,Meifang Su
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:112: 108174-108174
标识
DOI:10.1016/j.compbiolchem.2024.108174
摘要

Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Xide完成签到,获得积分10
1秒前
4秒前
容布丁发布了新的文献求助10
4秒前
无辜之卉完成签到,获得积分10
6秒前
月颜关注了科研通微信公众号
6秒前
wanci应助虎虎采纳,获得10
6秒前
我是老大应助文章大发采纳,获得10
6秒前
田様应助Xide采纳,获得10
7秒前
光亮芷天完成签到,获得积分10
7秒前
老爹不开车完成签到,获得积分10
8秒前
香蕉觅云应助无辜之卉采纳,获得10
9秒前
9秒前
爱听歌雪旋完成签到 ,获得积分10
9秒前
草木发布了新的文献求助10
9秒前
zorro3574发布了新的文献求助10
10秒前
端庄的汽车完成签到,获得积分10
10秒前
11秒前
yf完成签到,获得积分10
11秒前
LRose完成签到,获得积分10
12秒前
意意发布了新的文献求助10
15秒前
弯弯完成签到 ,获得积分10
16秒前
19秒前
xuan完成签到,获得积分10
20秒前
20秒前
科研通AI2S应助晚风吹起来采纳,获得10
20秒前
AIT发布了新的文献求助10
22秒前
科研通AI2S应助M张采纳,获得10
23秒前
lucky完成签到 ,获得积分10
24秒前
25秒前
26秒前
28秒前
28秒前
自然友菱完成签到,获得积分10
28秒前
酷波er应助啊锤你头采纳,获得10
28秒前
29秒前
小二郎应助甜蜜灵波采纳,获得10
30秒前
昆1231231231发布了新的文献求助10
30秒前
lyfrey完成签到,获得积分10
31秒前
洛神发布了新的文献求助10
32秒前
hu完成签到,获得积分10
32秒前
高分求助中
The Oxford Handbook of Social Cognition (Second Edition, 2024) 1050
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
English Wealden Fossils 700
Chen Hansheng: China’s Last Romantic Revolutionary 500
COSMETIC DERMATOLOGY & SKINCARE PRACTICE 388
Case Research: The Case Writing Process 300
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3141417
求助须知:如何正确求助?哪些是违规求助? 2792460
关于积分的说明 7802814
捐赠科研通 2448645
什么是DOI,文献DOI怎么找? 1302695
科研通“疑难数据库(出版商)”最低求助积分说明 626650
版权声明 601237