Identification of angiogenesis-related subtypes and risk models for predicting the prognosis of gastric cancer patients

鉴定(生物学) 血管生成 癌症 医学 内科学 肿瘤科 计算生物学 生物信息学 生物 植物
作者
Jie Luo,Mengyun Liang,Tengfei Ma,Bizhen Dong,Liping Jia,Meifang Su
出处
期刊:Computational Biology and Chemistry [Elsevier]
卷期号:112: 108174-108174
标识
DOI:10.1016/j.compbiolchem.2024.108174
摘要

Gastric cancer (GC) is a leading cause of cancer-related mortality and is characterized by significant heterogeneity, highlighting the need for further studies aimed at personalized treatment strategies. Tumor angiogenesis is critical for tumor development and metastasis, yet its role in molecular subtyping and prognosis prediction remains underexplored. This study aims to identify angiogenesis-related subtypes and develop a prognostic model for GC patients. Using data from The Cancer Genome Atlas (TCGA), we performed consensus cluster analysis on differentially expressed angiogenesis-related genes (ARGs), identifying two patient subtypes with distinct survival outcomes. Differentially expressed genes between the subtypes were analyzed via Cox and LASSO regression, leading to the establishment of a subtype-based prognostic model using a machine learning algorithm. Patients were classified into high- and low-risk groups based on the risk score. Validation was performed using independent datasets (ICGC and GSE15459). We utilized a deconvolution algorithm to investigate the tumor immune microenvironment in different risk groups and conducted analyses on genetic profiling, sensitivity and combination of anti-tumor drug. Our study identified ten prognostic signature genes, enabling the calculation of a risk score to predict prognosis and overall survival. This provides critical data for stratified diagnosis and treatment upon patient admission, monitoring disease progression throughout the entire course, evaluating immunotherapy efficacy, and selecting personalized medications for GC patients.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
大模型应助时尚萤采纳,获得10
刚刚
JamesPei应助ambeing采纳,获得10
刚刚
1秒前
光之霓裳完成签到 ,获得积分10
1秒前
Ava应助宅多点采纳,获得10
1秒前
碧蓝翅膀发布了新的文献求助10
1秒前
1秒前
Zx_1993应助落寞臻采纳,获得20
1秒前
Lee发布了新的文献求助10
1秒前
1秒前
bottle发布了新的文献求助10
2秒前
2秒前
外向青筠完成签到 ,获得积分10
3秒前
量子星尘发布了新的文献求助10
4秒前
5秒前
可可卡比兽完成签到 ,获得积分10
5秒前
11发布了新的文献求助10
5秒前
刘佳发布了新的文献求助10
5秒前
肥牛完成签到,获得积分10
6秒前
小鱼发布了新的文献求助10
6秒前
6秒前
脑洞疼应助淡定的猎豹采纳,获得10
7秒前
7秒前
王哇噻发布了新的文献求助10
7秒前
科研通AI6应助迈尔馬采纳,获得10
8秒前
ql88完成签到,获得积分20
9秒前
9秒前
lin发布了新的文献求助10
12秒前
积极松完成签到 ,获得积分10
12秒前
喵喵发布了新的文献求助10
12秒前
共享精神应助刘佳采纳,获得10
12秒前
wenky发布了新的文献求助10
12秒前
秋秋子完成签到,获得积分10
13秒前
Sunflower完成签到,获得积分20
14秒前
季生完成签到,获得积分10
14秒前
15秒前
上官若男应助ql88采纳,获得10
15秒前
张本丁完成签到,获得积分10
15秒前
王懒懒完成签到 ,获得积分10
15秒前
16秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1601
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
Pediatric Nutrition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5552966
求助须知:如何正确求助?哪些是违规求助? 4637628
关于积分的说明 14650127
捐赠科研通 4579439
什么是DOI,文献DOI怎么找? 2511663
邀请新用户注册赠送积分活动 1486607
关于科研通互助平台的介绍 1457616