Fabrication of Single-Ion Conductors Based on Liquid Crystal Polymer Network for Quasi-Solid-State Lithium Ion Batteries

材料科学 电解质 锂(药物) 准固态 离子电导率 电化学 离子 化学工程 快离子导体 聚合物 电化学窗口 热稳定性 纳米技术 电极 复合材料 有机化学 物理化学 化学 色素敏化染料 工程类 内分泌学 医学
作者
Hui Peng,Xin Fan,Wei Huang,Wei Liu,Yonggang Yang,Qun Zhou,Yi Li
出处
期刊:ACS Applied Materials & Interfaces [American Chemical Society]
标识
DOI:10.1021/acsami.4c11500
摘要

Single-ion conductive polymer electrolytes can improve the safety of lithium ion batteries (LIBs) by increasing the lithium transference number (tLi+) and avoiding the growth of lithium dendrites. Meanwhile, the self-assembled ordered structure of liquid crystal polymer networks (LCNs) can provide specific channels for the ordered transport of Li ions. Herein, single-ion conductive nematic and cholesteric LCN electrolyte membranes (denoted as NLCN-Li and CLCN-Li) were successfully prepared. NLCN-Li was then coated on commercial Celgard 2325 while CLCN-Li was coated on poly(vinylidene fluoride-hexafluoropropylene) film, coupled with plasticizer, to make NLCN-Li/Cel and CLCN-Li/Pv quasi-solid-state electrolyte membranes, respectively. Their electrochemical properties were evaluated, and it was found that they possessed benign thermal stability and electrolyte/electrode compatibility, high tLi+ up to 0.98 and high electrochemical stability window up to 5.2 V. A small amount (0.5M) of extra Li salt added to the plasticizer could improve the ion conductivity from 1.79 × 10–5 to 5.04 × 10–4 S cm–1, while the tLi+ remained 0.85. The assembled LFP|Li batteries also exhibited excellent cycling and rate performances. The orderliness of the LCN layer played an important role in the distribution and movement of Li ions, thereby affecting the Li deposition and growth of Li dendrites. As the first report of nematic and cholesteric LCN single-ion conductors, this work sheds light on the design and fabrication of ordered quasi-solid-state electrolytes for high-performance and safe LIBs.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Di完成签到 ,获得积分10
刚刚
刚刚
姚俊88888888完成签到 ,获得积分10
刚刚
1秒前
由访冬发布了新的文献求助10
2秒前
2秒前
天天962068应助可爱的彩虹采纳,获得20
2秒前
深情安青应助有丶神采纳,获得10
3秒前
3秒前
3秒前
3秒前
海上溜冰发布了新的文献求助10
4秒前
1111发布了新的文献求助10
4秒前
4秒前
Overlord发布了新的文献求助10
6秒前
7秒前
科研通AI5应助调皮的过客采纳,获得10
7秒前
xixi完成签到 ,获得积分10
8秒前
8秒前
catzhou发布了新的文献求助10
9秒前
汉堡包应助ju龙哥采纳,获得10
9秒前
陈M雯发布了新的文献求助10
9秒前
于晨欣发布了新的文献求助10
10秒前
万能图书馆应助阳光孤菱采纳,获得10
10秒前
慕青应助kirisaki采纳,获得10
10秒前
十三发布了新的文献求助10
11秒前
bkagyin应助努力毕业、采纳,获得10
11秒前
wanci应助亚当寇克采纳,获得10
11秒前
11秒前
13秒前
大个应助唠叨的白曼采纳,获得10
14秒前
Young完成签到,获得积分10
14秒前
科研通AI5应助Hana采纳,获得10
14秒前
赘婿应助chendongyingcdy采纳,获得10
15秒前
15秒前
16秒前
16秒前
16秒前
桐桐应助AA采纳,获得10
16秒前
GH完成签到,获得积分10
17秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3489728
求助须知:如何正确求助?哪些是违规求助? 3076891
关于积分的说明 9146763
捐赠科研通 2769039
什么是DOI,文献DOI怎么找? 1519596
邀请新用户注册赠送积分活动 704014
科研通“疑难数据库(出版商)”最低求助积分说明 702060