Development of a Predictive Model for Carbon Dioxide Corrosion Rate and Severity Based on Machine Learning Algorithms

随机森林 支持向量机 机器学习 腐蚀 人工智能 计算机科学 预测建模 一般化 决策树 试验装置 梯度升压 算法 数据挖掘 材料科学 数学 数学分析 冶金
作者
Zhenzhen Dong,Min Zhang,Weirong Li,Fenggang Wen,Guoqing Dong,Lu Zou,Yongqiang Zhang
出处
期刊:Materials [MDPI AG]
卷期号:17 (16): 4046-4046
标识
DOI:10.3390/ma17164046
摘要

Carbon dioxide corrosion is a pervasive issue in pipelines and the petroleum industry, posing substantial risks to equipment safety and longevity. Accurate prediction of corrosion rates and severity is essential for effective material selection and equipment maintenance. This paper begins by addressing the limitations of traditional corrosion prediction methods and explores the application of machine learning algorithms in CO2 corrosion prediction. Conventional models often fail to capture the complex interactions among multiple factors, resulting in suboptimal prediction accuracy, limited adaptability, and poor generalization. To overcome these limitations, this study systematically organized and analyzed the data, performed a correlation analysis of the data features, and examined the factors influencing corrosion. Subsequently, prediction models were developed using six algorithms: Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), XGBoost, and LightGBM. The results revealed that SVM exhibited the lowest performance on both training and test sets, while RF achieved the best results with R2 values of 0.92 for the training set and 0.88 for the test set. In the classification of corrosion severity, RF, LightGBM, SVM, and KNN were utilized, with RF demonstrating superior performance, achieving an accuracy of 99% and an F1-score of 0.99. This study highlights that machine learning algorithms, particularly Random Forest, offer substantial potential for predicting and classifying CO2 corrosion. These algorithms provide innovative approaches and valuable insights for practical applications, enhancing predictive accuracy and operational efficiency in corrosion management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jane完成签到 ,获得积分10
刚刚
夏天呀完成签到,获得积分10
1秒前
滴答dddd发布了新的文献求助10
1秒前
鹿七七完成签到,获得积分10
2秒前
2秒前
3秒前
马开峰完成签到,获得积分10
3秒前
认真的薄荷完成签到,获得积分10
3秒前
jin_strive完成签到,获得积分0
3秒前
3秒前
栗子应助王自信采纳,获得10
4秒前
4秒前
Jian完成签到,获得积分10
4秒前
qiming完成签到,获得积分10
5秒前
下课了吧发布了新的文献求助10
6秒前
我爱科研完成签到,获得积分10
6秒前
Y.完成签到,获得积分10
7秒前
霸气南珍发布了新的文献求助10
7秒前
cwl发布了新的文献求助10
8秒前
王大爷完成签到,获得积分10
8秒前
Lucas应助研友_Ze2k48采纳,获得10
8秒前
马开峰发布了新的文献求助10
9秒前
大个应助玛卡巴卡采纳,获得10
9秒前
何求完成签到,获得积分10
9秒前
phg022完成签到,获得积分10
10秒前
10秒前
神秘的外星人完成签到,获得积分10
10秒前
专注完成签到,获得积分10
10秒前
10秒前
努力退休小博士完成签到,获得积分10
11秒前
852应助河河采纳,获得10
13秒前
13秒前
下课了吧完成签到,获得积分10
13秒前
FashionBoy应助丰富的大地采纳,获得10
13秒前
虎虎虎hu完成签到,获得积分20
14秒前
14秒前
研友_西门孤晴完成签到,获得积分10
15秒前
念念完成签到,获得积分10
16秒前
冰勾板勾完成签到,获得积分0
17秒前
18秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
The Lali Section: An Excellent Reference Section for Upper - Devonian in South China 1500
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3244993
求助须知:如何正确求助?哪些是违规求助? 2888654
关于积分的说明 8254529
捐赠科研通 2557066
什么是DOI,文献DOI怎么找? 1385741
科研通“疑难数据库(出版商)”最低求助积分说明 650214
邀请新用户注册赠送积分活动 626422