Development of a Predictive Model for Carbon Dioxide Corrosion Rate and Severity Based on Machine Learning Algorithms

随机森林 支持向量机 机器学习 腐蚀 人工智能 计算机科学 预测建模 一般化 决策树 试验装置 梯度升压 算法 数据挖掘 材料科学 数学 数学分析 冶金
作者
Zhenzhen Dong,Min Zhang,Weirong Li,Fenggang Wen,Guoqing Dong,Lu Zou,Yongqiang Zhang
出处
期刊:Materials [MDPI AG]
卷期号:17 (16): 4046-4046
标识
DOI:10.3390/ma17164046
摘要

Carbon dioxide corrosion is a pervasive issue in pipelines and the petroleum industry, posing substantial risks to equipment safety and longevity. Accurate prediction of corrosion rates and severity is essential for effective material selection and equipment maintenance. This paper begins by addressing the limitations of traditional corrosion prediction methods and explores the application of machine learning algorithms in CO2 corrosion prediction. Conventional models often fail to capture the complex interactions among multiple factors, resulting in suboptimal prediction accuracy, limited adaptability, and poor generalization. To overcome these limitations, this study systematically organized and analyzed the data, performed a correlation analysis of the data features, and examined the factors influencing corrosion. Subsequently, prediction models were developed using six algorithms: Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), XGBoost, and LightGBM. The results revealed that SVM exhibited the lowest performance on both training and test sets, while RF achieved the best results with R2 values of 0.92 for the training set and 0.88 for the test set. In the classification of corrosion severity, RF, LightGBM, SVM, and KNN were utilized, with RF demonstrating superior performance, achieving an accuracy of 99% and an F1-score of 0.99. This study highlights that machine learning algorithms, particularly Random Forest, offer substantial potential for predicting and classifying CO2 corrosion. These algorithms provide innovative approaches and valuable insights for practical applications, enhancing predictive accuracy and operational efficiency in corrosion management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
上官若男应助jackie采纳,获得10
刚刚
刚刚
我是站长才怪应助Benliu采纳,获得20
1秒前
1秒前
zh20130完成签到,获得积分10
1秒前
1秒前
TT发布了新的文献求助10
2秒前
Star1983发布了新的文献求助10
2秒前
研友_LXdbaL完成签到,获得积分10
3秒前
4秒前
在水一方应助66采纳,获得10
5秒前
5秒前
5秒前
缘一发布了新的文献求助10
6秒前
junzilan发布了新的文献求助10
7秒前
CipherSage应助赖道之采纳,获得10
8秒前
ccc完成签到,获得积分10
8秒前
8秒前
8秒前
11秒前
Pauline完成签到,获得积分10
13秒前
jackie发布了新的文献求助10
13秒前
笨笨摇伽发布了新的文献求助10
15秒前
科目三应助皓月繁星采纳,获得10
15秒前
tomato完成签到,获得积分20
17秒前
CodeCraft应助缘一采纳,获得10
18秒前
小二郎应助刘铭晨采纳,获得10
18秒前
18秒前
大个应助风雨1210采纳,获得10
18秒前
一壶清酒完成签到,获得积分10
18秒前
19秒前
tomato发布了新的文献求助30
20秒前
陈莹发布了新的文献求助10
21秒前
22秒前
22秒前
小狗同志006完成签到,获得积分10
22秒前
22秒前
23秒前
23秒前
皓月繁星完成签到,获得积分10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527961
求助须知:如何正确求助?哪些是违规求助? 3108159
关于积分的说明 9287825
捐赠科研通 2805882
什么是DOI,文献DOI怎么找? 1540070
邀请新用户注册赠送积分活动 716926
科研通“疑难数据库(出版商)”最低求助积分说明 709808