已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Development of a Predictive Model for Carbon Dioxide Corrosion Rate and Severity Based on Machine Learning Algorithms

随机森林 支持向量机 机器学习 腐蚀 人工智能 计算机科学 预测建模 一般化 决策树 试验装置 梯度升压 算法 数据挖掘 材料科学 数学 数学分析 冶金
作者
Zhenzhen Dong,Min Zhang,Weirong Li,Fenggang Wen,Guoqing Dong,Lu Zou,Yongqiang Zhang
出处
期刊:Materials [Multidisciplinary Digital Publishing Institute]
卷期号:17 (16): 4046-4046
标识
DOI:10.3390/ma17164046
摘要

Carbon dioxide corrosion is a pervasive issue in pipelines and the petroleum industry, posing substantial risks to equipment safety and longevity. Accurate prediction of corrosion rates and severity is essential for effective material selection and equipment maintenance. This paper begins by addressing the limitations of traditional corrosion prediction methods and explores the application of machine learning algorithms in CO2 corrosion prediction. Conventional models often fail to capture the complex interactions among multiple factors, resulting in suboptimal prediction accuracy, limited adaptability, and poor generalization. To overcome these limitations, this study systematically organized and analyzed the data, performed a correlation analysis of the data features, and examined the factors influencing corrosion. Subsequently, prediction models were developed using six algorithms: Random Forest (RF), K-Nearest Neighbors (KNN), Gradient Boosting Decision Tree (GBDT), Support Vector Machine (SVM), XGBoost, and LightGBM. The results revealed that SVM exhibited the lowest performance on both training and test sets, while RF achieved the best results with R2 values of 0.92 for the training set and 0.88 for the test set. In the classification of corrosion severity, RF, LightGBM, SVM, and KNN were utilized, with RF demonstrating superior performance, achieving an accuracy of 99% and an F1-score of 0.99. This study highlights that machine learning algorithms, particularly Random Forest, offer substantial potential for predicting and classifying CO2 corrosion. These algorithms provide innovative approaches and valuable insights for practical applications, enhancing predictive accuracy and operational efficiency in corrosion management.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
小蘑菇应助mingming采纳,获得10
1秒前
马翔宇发布了新的文献求助10
1秒前
evermore完成签到 ,获得积分10
2秒前
3秒前
Lucas应助拼搏的败采纳,获得10
3秒前
完美世界应助拼搏的败采纳,获得10
3秒前
打打应助拼搏的败采纳,获得10
3秒前
李爱国应助拼搏的败采纳,获得10
3秒前
王洪宇完成签到 ,获得积分10
4秒前
。。。发布了新的文献求助10
4秒前
5秒前
xueqinFan发布了新的文献求助10
10秒前
ebby发布了新的文献求助10
11秒前
所所应助HS采纳,获得10
12秒前
14秒前
16秒前
17秒前
19秒前
20秒前
21秒前
ssynkl发布了新的文献求助10
22秒前
22秒前
james完成签到,获得积分10
23秒前
丘比特应助spz150采纳,获得10
24秒前
Xxxxzzz完成签到,获得积分10
24秒前
hyhyhyhy发布了新的文献求助10
25秒前
吴小胖发布了新的文献求助10
27秒前
27秒前
admire发布了新的文献求助10
27秒前
yc发布了新的文献求助10
28秒前
深情安青应助拼搏的败采纳,获得10
29秒前
汉堡包应助huili采纳,获得20
30秒前
冰之发布了新的文献求助10
30秒前
充电宝应助hyhyhyhy采纳,获得10
30秒前
31秒前
科目三应助啊啊采纳,获得10
33秒前
天天快乐应助啊啊采纳,获得10
33秒前
Ava应助啊啊采纳,获得10
33秒前
传奇3应助啊啊采纳,获得10
33秒前
CipherSage应助啊啊采纳,获得10
33秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 1000
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 310
The Moiseyev Dance Company Tours America: "Wholesome" Comfort during a Cold War 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3980513
求助须知:如何正确求助?哪些是违规求助? 3524474
关于积分的说明 11221565
捐赠科研通 3261897
什么是DOI,文献DOI怎么找? 1800958
邀请新用户注册赠送积分活动 879525
科研通“疑难数据库(出版商)”最低求助积分说明 807294