Overcoming the Limits of Cross-Sensitivity: Pattern Recognition Methods for Chemiresistive Gas Sensor Array

灵敏度(控制系统) 计算机科学 鉴定(生物学) 可靠性(半导体) 人工智能 传感器阵列 机器学习 数据挖掘 模式识别(心理学) 工程类 电子工程 功率(物理) 植物 物理 量子力学 生物
作者
Haixia Mei,Jingyi Peng,Tao Wang,Tingting Zhou,Hongran Zhao,Tong Zhang,Zhi Yang
出处
期刊:Nano-micro Letters [Springer Nature]
卷期号:16 (1) 被引量:7
标识
DOI:10.1007/s40820-024-01489-z
摘要

Abstract As information acquisition terminals for artificial olfaction, chemiresistive gas sensors are often troubled by their cross-sensitivity, and reducing their cross-response to ambient gases has always been a difficult and important point in the gas sensing area. Pattern recognition based on sensor array is the most conspicuous way to overcome the cross-sensitivity of gas sensors. It is crucial to choose an appropriate pattern recognition method for enhancing data analysis, reducing errors and improving system reliability, obtaining better classification or gas concentration prediction results. In this review, we analyze the sensing mechanism of cross-sensitivity for chemiresistive gas sensors. We further examine the types, working principles, characteristics, and applicable gas detection range of pattern recognition algorithms utilized in gas-sensing arrays. Additionally, we report, summarize, and evaluate the outstanding and novel advancements in pattern recognition methods for gas identification. At the same time, this work showcases the recent advancements in utilizing these methods for gas identification, particularly within three crucial domains: ensuring food safety, monitoring the environment, and aiding in medical diagnosis. In conclusion, this study anticipates future research prospects by considering the existing landscape and challenges. It is hoped that this work will make a positive contribution towards mitigating cross-sensitivity in gas-sensitive devices and offer valuable insights for algorithm selection in gas recognition applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
mengloo完成签到,获得积分10
1秒前
Yyy发布了新的文献求助10
4秒前
fighting完成签到 ,获得积分10
6秒前
jinyu发布了新的文献求助10
10秒前
10秒前
乐观的大白菜真实的钥匙完成签到,获得积分10
12秒前
13秒前
康有为完成签到,获得积分20
13秒前
14秒前
14秒前
爱静静应助废弃工采纳,获得10
15秒前
康有为发布了新的文献求助10
17秒前
微笑的小虾米完成签到,获得积分10
17秒前
852应助魏佳旭采纳,获得10
18秒前
科研通AI2S应助科研通管家采纳,获得10
18秒前
斯文败类应助科研通管家采纳,获得10
19秒前
午见千山应助科研通管家采纳,获得10
19秒前
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
19秒前
香蕉觅云应助科研通管家采纳,获得10
19秒前
19秒前
Owen应助龙龍泷采纳,获得10
21秒前
研友_Ljqal8完成签到,获得积分10
22秒前
tang完成签到 ,获得积分10
23秒前
冰雪王子发布了新的文献求助200
24秒前
24秒前
脑洞疼应助lyx采纳,获得10
25秒前
25秒前
27秒前
28秒前
real完成签到 ,获得积分10
28秒前
yin发布了新的文献求助10
30秒前
楚霖澜完成签到,获得积分10
31秒前
魏佳旭发布了新的文献求助10
33秒前
方赫然应助93采纳,获得10
39秒前
科研小虫应助xy820采纳,获得10
40秒前
搜集达人应助orange9采纳,获得10
41秒前
xzza完成签到,获得积分10
42秒前
zzz完成签到,获得积分10
44秒前
高分求助中
The late Devonian Standard Conodont Zonation 2000
Semiconductor Process Reliability in Practice 1500
Handbook of Prejudice, Stereotyping, and Discrimination (3rd Ed. 2024) 1200
Nickel superalloy market size, share, growth, trends, and forecast 2023-2030 1000
Smart but Scattered: The Revolutionary Executive Skills Approach to Helping Kids Reach Their Potential (第二版) 1000
Mantiden: Faszinierende Lauerjäger Faszinierende Lauerjäger 800
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3243751
求助须知:如何正确求助?哪些是违规求助? 2887588
关于积分的说明 8249165
捐赠科研通 2556263
什么是DOI,文献DOI怎么找? 1384394
科研通“疑难数据库(出版商)”最低求助积分说明 649847
邀请新用户注册赠送积分活动 625794