Physiologically based pharmacokinetic modeling of metal nanoparticles for risk assessment of inhalation exposures: a state-of-the-science expert panel review

吸入 吸入染毒 风险评估 药代动力学 国家(计算机科学) 纳米颗粒 材料科学 医学 纳米技术 药理学 计算机科学 麻醉 计算机安全 算法
作者
Christopher R. Kirman,Brenna Kent,Jacob Bigelow,Richard Canady,Quansheng Chen,W. C. Chou,Dingsheng Li,Zhoumeng Lin,Vikas Kumar,Alicia Paini,Philippe Poulin,Lisa Sweeney,Sean M. Hays
出处
期刊:Nanotoxicology [Informa]
卷期号:: 1-15
标识
DOI:10.1080/17435390.2024.2401430
摘要

A critical review of the current state-of-the-science for the physiologically based pharmacokinetic (PBPK) modeling of metal nanoparticles and their application to human health risk assessment for inhalation exposures was conducted. A systematic literature search was used to identify four model groups (defined as a primary publication along with multiple supplementary publications) subject to review. Using a recent guideline document from the Organization for Economic Cooperation and Development (OECD) for PBPK model evaluation, these model groups were critically peer-reviewed by an independent panel of experts to identify those to be considered for modeling and simulation application. Based upon the expert panel input, model confidence scores for the four model groups ranged from 30 to 41 (out of a maximum score of 50). The three highest-scoring model groups were then applied to compare predictions to a different metal nanoparticle (i.e. not specifically used to parameterize the original models) using a recently published data set for tissue burdens in rats, as well as predicting human tissue burdens expected for corresponding occupational exposures. Overall, the rat models performed reasonably well in predicting the lung but tended to overestimate systemic tissue burdens. Data needs for improving the state-of-the-science, including quantitative particle characterization in tissues, nanoparticle-corona data, long-term exposure data, interspecies extrapolation methods, and human biomonitoring/toxicokinetic data are discussed.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Jasper应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
田様应助科研通管家采纳,获得10
2秒前
隐形曼青应助科研通管家采纳,获得10
2秒前
CodeCraft应助科研通管家采纳,获得30
2秒前
科研通AI2S应助科研通管家采纳,获得10
2秒前
qing_he应助科研通管家采纳,获得10
2秒前
科目三应助科研通管家采纳,获得10
2秒前
薰硝壤应助科研通管家采纳,获得20
2秒前
bkagyin应助科研通管家采纳,获得10
3秒前
一石二鸟应助科研通管家采纳,获得10
3秒前
Ava应助科研通管家采纳,获得10
3秒前
CipherSage应助科研通管家采纳,获得10
3秒前
xiaoming应助科研通管家采纳,获得10
3秒前
李健应助科研通管家采纳,获得10
3秒前
qing_he应助科研通管家采纳,获得10
3秒前
我是老大应助科研通管家采纳,获得10
3秒前
星辰大海应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
4秒前
4秒前
5秒前
某某完成签到,获得积分10
6秒前
phyllis完成签到,获得积分10
6秒前
7秒前
NexusExplorer应助smallsix采纳,获得10
8秒前
Jasper应助鸿鲤采纳,获得10
8秒前
8秒前
9秒前
9秒前
光亮笑柳发布了新的文献求助10
11秒前
aristy完成签到,获得积分10
11秒前
盐kk完成签到 ,获得积分10
11秒前
11秒前
11秒前
minjeong发布了新的文献求助10
12秒前
湛刘佳发布了新的文献求助10
13秒前
13秒前
LmaoAI发布了新的文献求助10
13秒前
淡定蓝发布了新的文献求助10
13秒前
高分求助中
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
Rechtsphilosophie 1000
Bayesian Models of Cognition:Reverse Engineering the Mind 888
Le dégorgement réflexe des Acridiens 800
Defense against predation 800
Very-high-order BVD Schemes Using β-variable THINC Method 568
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3135943
求助须知:如何正确求助?哪些是违规求助? 2786734
关于积分的说明 7779353
捐赠科研通 2442999
什么是DOI,文献DOI怎么找? 1298768
科研通“疑难数据库(出版商)”最低求助积分说明 625232
版权声明 600870