Improving topic modeling for literary studies: a hybrid model combined with Word2Vec visualization in the case of Robinson Crusoe

文字2vec 可视化 计算机科学 人工智能 情报检索 嵌入
作者
Haifeng Hui
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:40 (1): 151-163
标识
DOI:10.1093/llc/fqaf002
摘要

Abstract Topic modeling techniques, initially developed for the analysis of short texts, often face challenges when applied to literary research due to the complexity of the literary language and length of the text. Algorithms that typically yield clear and distinct topics for concise informative or opinionated texts often produce ambiguous and overlapping results in literary contexts. This article explores the application of one of the most popular topic modeling techniques, latent Dirichlet allocation (LDA), in the analysis of fiction and addresses these central questions regarding the effectiveness and interpretation of LDA topics through a case study of Robinson Crusoe. It proposes combining the Word2Vec method with LDA analysis to render topic modeling results more readable by mapping topics words in a three-dimensional space where semantically related words are placed close to each other. Furthermore, this integrated approach undergoes validation using various children’s editions of the novel and other works by the same author to assess its effectiveness. It is found that the combined method is capable of differentiating subtle changes in children’s editions and other novels. This study highlights the promising potential of LDA in literary research and underscores the importance of visualization techniques for nuanced interpretations of LDA topics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
英姑应助任性的老九采纳,获得10
1秒前
1秒前
嬴政飞发布了新的文献求助10
1秒前
1秒前
2秒前
2秒前
2秒前
DueDue0327发布了新的文献求助10
2秒前
菲菲完成签到 ,获得积分10
3秒前
Lucas应助小小采纳,获得10
3秒前
3秒前
3秒前
大模型应助蓝色雪狐采纳,获得10
3秒前
niNe3YUE应助danielsong采纳,获得10
3秒前
东西南北发布了新的文献求助10
4秒前
琳琳完成签到,获得积分20
4秒前
5秒前
5秒前
5秒前
6秒前
xiaowang完成签到,获得积分10
6秒前
bkagyin应助poppy采纳,获得10
6秒前
归尘发布了新的文献求助10
6秒前
优雅不愁发布了新的文献求助10
6秒前
Anhber发布了新的文献求助10
6秒前
6秒前
林深时见鹿完成签到,获得积分10
7秒前
7秒前
打打应助司空元正采纳,获得10
7秒前
bt4567发布了新的文献求助10
7秒前
行简发布了新的文献求助10
8秒前
格物致知发布了新的文献求助10
8秒前
Jerry完成签到,获得积分10
8秒前
ding发布了新的文献求助10
8秒前
大模型应助hyhyhyhy采纳,获得10
8秒前
平常艳一发布了新的文献求助10
9秒前
10秒前
10秒前
爆米花应助任某人采纳,获得10
10秒前
Aaaasaki完成签到,获得积分10
10秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5581693
求助须知:如何正确求助?哪些是违规求助? 4665895
关于积分的说明 14759417
捐赠科研通 4607833
什么是DOI,文献DOI怎么找? 2528395
邀请新用户注册赠送积分活动 1497666
关于科研通互助平台的介绍 1466553