Improving topic modeling for literary studies: a hybrid model combined with Word2Vec visualization in the case of Robinson Crusoe

文字2vec 可视化 计算机科学 人工智能 情报检索 嵌入
作者
Haifeng Hui
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
标识
DOI:10.1093/llc/fqaf002
摘要

Abstract Topic modeling techniques, initially developed for the analysis of short texts, often face challenges when applied to literary research due to the complexity of the literary language and length of the text. Algorithms that typically yield clear and distinct topics for concise informative or opinionated texts often produce ambiguous and overlapping results in literary contexts. This article explores the application of one of the most popular topic modeling techniques, latent Dirichlet allocation (LDA), in the analysis of fiction and addresses these central questions regarding the effectiveness and interpretation of LDA topics through a case study of Robinson Crusoe. It proposes combining the Word2Vec method with LDA analysis to render topic modeling results more readable by mapping topics words in a three-dimensional space where semantically related words are placed close to each other. Furthermore, this integrated approach undergoes validation using various children’s editions of the novel and other works by the same author to assess its effectiveness. It is found that the combined method is capable of differentiating subtle changes in children’s editions and other novels. This study highlights the promising potential of LDA in literary research and underscores the importance of visualization techniques for nuanced interpretations of LDA topics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
111完成签到,获得积分10
刚刚
111完成签到 ,获得积分10
1秒前
打打应助jackie采纳,获得30
1秒前
111发布了新的文献求助10
3秒前
充电宝应助科研通管家采纳,获得10
3秒前
Foldog完成签到,获得积分10
3秒前
NexusExplorer应助科研通管家采纳,获得10
3秒前
顾矜应助科研通管家采纳,获得10
3秒前
科研通AI2S应助科研通管家采纳,获得10
3秒前
3秒前
3秒前
3秒前
小二郎应助科研通管家采纳,获得10
3秒前
搜集达人应助科研通管家采纳,获得10
3秒前
JamesPei应助科研通管家采纳,获得10
3秒前
Singularity应助科研通管家采纳,获得10
3秒前
隐形曼青应助科研通管家采纳,获得10
3秒前
欣喜的薯片完成签到 ,获得积分10
3秒前
3秒前
桐桐应助科研通管家采纳,获得10
4秒前
4秒前
4秒前
灵巧的翠桃完成签到,获得积分10
4秒前
5秒前
完美世界应助111采纳,获得10
6秒前
解剖六楼那小哥完成签到 ,获得积分10
6秒前
微笑的语芙完成签到 ,获得积分10
6秒前
樱偶猫发布了新的文献求助10
6秒前
8秒前
敏敏完成签到 ,获得积分10
8秒前
anderson1738发布了新的文献求助10
9秒前
心有意完成签到,获得积分10
12秒前
12秒前
张飞扬发布了新的文献求助10
13秒前
英姑应助一口李子皮采纳,获得10
14秒前
14秒前
斯文败类应助安寒采纳,获得10
15秒前
满意外套完成签到,获得积分10
15秒前
15秒前
16秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2500
Востребованный временем 2500
Agaricales of New Zealand 1: Pluteaceae - Entolomataceae 1040
지식생태학: 생태학, 죽은 지식을 깨우다 600
海南省蛇咬伤流行病学特征与预后影响因素分析 500
Neuromuscular and Electrodiagnostic Medicine Board Review 500
ランス多機能化技術による溶鋼脱ガス処理の高効率化の研究 500
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3461413
求助须知:如何正确求助?哪些是违规求助? 3055059
关于积分的说明 9046383
捐赠科研通 2744996
什么是DOI,文献DOI怎么找? 1505792
科研通“疑难数据库(出版商)”最低求助积分说明 695820
邀请新用户注册赠送积分活动 695281