Improving topic modeling for literary studies: a hybrid model combined with Word2Vec visualization in the case of Robinson Crusoe

文字2vec 可视化 计算机科学 人工智能 情报检索 嵌入
作者
Haifeng Hui
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:40 (1): 151-163
标识
DOI:10.1093/llc/fqaf002
摘要

Abstract Topic modeling techniques, initially developed for the analysis of short texts, often face challenges when applied to literary research due to the complexity of the literary language and length of the text. Algorithms that typically yield clear and distinct topics for concise informative or opinionated texts often produce ambiguous and overlapping results in literary contexts. This article explores the application of one of the most popular topic modeling techniques, latent Dirichlet allocation (LDA), in the analysis of fiction and addresses these central questions regarding the effectiveness and interpretation of LDA topics through a case study of Robinson Crusoe. It proposes combining the Word2Vec method with LDA analysis to render topic modeling results more readable by mapping topics words in a three-dimensional space where semantically related words are placed close to each other. Furthermore, this integrated approach undergoes validation using various children’s editions of the novel and other works by the same author to assess its effectiveness. It is found that the combined method is capable of differentiating subtle changes in children’s editions and other novels. This study highlights the promising potential of LDA in literary research and underscores the importance of visualization techniques for nuanced interpretations of LDA topics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Lucas应助sure采纳,获得10
刚刚
Hello应助大胆半莲采纳,获得10
刚刚
刚刚
琉璃岁月发布了新的文献求助10
1秒前
1秒前
张志超发布了新的文献求助10
1秒前
桐桐应助蓝星采纳,获得10
1秒前
酸奶山茶柚完成签到,获得积分10
1秒前
852应助激昂的柚子采纳,获得10
1秒前
悦耳的南露完成签到,获得积分10
2秒前
悠悠发布了新的文献求助10
2秒前
一只小羊完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
3秒前
3秒前
华仔应助吱吱组织杂质采纳,获得10
3秒前
3秒前
3秒前
Aurora完成签到,获得积分10
3秒前
3秒前
满意花生完成签到,获得积分10
4秒前
4XXXX完成签到,获得积分20
4秒前
Zx_1993应助阳光的涵菡采纳,获得10
4秒前
芝华完成签到 ,获得积分10
4秒前
自由的曼卉应助漂亮幻莲采纳,获得10
5秒前
浮游应助尚未千万里采纳,获得10
5秒前
zokker发布了新的文献求助10
5秒前
嘻嘻嘻嘻嘻嘻应助糯米采纳,获得10
5秒前
浮游应助积极的万言采纳,获得10
5秒前
5秒前
6秒前
6秒前
8秒前
果实发布了新的文献求助10
8秒前
8秒前
9秒前
小肚皮发布了新的文献求助10
9秒前
9秒前
9秒前
CLH发布了新的文献求助10
10秒前
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Iron toxicity and hematopoietic cell transplantation: do we understand why iron affects transplant outcome? 1500
List of 1,091 Public Pension Profiles by Region 1001
EEG in Childhood Epilepsy: Initial Presentation & Long-Term Follow-Up 500
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5473503
求助须知:如何正确求助?哪些是违规求助? 4575665
关于积分的说明 14353545
捐赠科研通 4503157
什么是DOI,文献DOI怎么找? 2467534
邀请新用户注册赠送积分活动 1455373
关于科研通互助平台的介绍 1429357