Improving topic modeling for literary studies: a hybrid model combined with Word2Vec visualization in the case of Robinson Crusoe

文字2vec 可视化 计算机科学 人工智能 情报检索 嵌入
作者
Haifeng Hui
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
标识
DOI:10.1093/llc/fqaf002
摘要

Abstract Topic modeling techniques, initially developed for the analysis of short texts, often face challenges when applied to literary research due to the complexity of the literary language and length of the text. Algorithms that typically yield clear and distinct topics for concise informative or opinionated texts often produce ambiguous and overlapping results in literary contexts. This article explores the application of one of the most popular topic modeling techniques, latent Dirichlet allocation (LDA), in the analysis of fiction and addresses these central questions regarding the effectiveness and interpretation of LDA topics through a case study of Robinson Crusoe. It proposes combining the Word2Vec method with LDA analysis to render topic modeling results more readable by mapping topics words in a three-dimensional space where semantically related words are placed close to each other. Furthermore, this integrated approach undergoes validation using various children’s editions of the novel and other works by the same author to assess its effectiveness. It is found that the combined method is capable of differentiating subtle changes in children’s editions and other novels. This study highlights the promising potential of LDA in literary research and underscores the importance of visualization techniques for nuanced interpretations of LDA topics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
粉色小妖精完成签到,获得积分10
1秒前
烟花应助十三采纳,获得10
3秒前
3秒前
尊敬寒松发布了新的文献求助10
5秒前
llll完成签到,获得积分10
5秒前
5秒前
复杂忻完成签到,获得积分10
5秒前
7秒前
8秒前
七面东风发布了新的文献求助20
8秒前
DarrenVan完成签到,获得积分10
8秒前
8秒前
小马甲应助难过的曼香采纳,获得10
8秒前
无足鸟完成签到,获得积分10
9秒前
研究啥完成签到,获得积分10
9秒前
DYB发布了新的文献求助10
10秒前
猫瑾完成签到,获得积分10
10秒前
11秒前
12秒前
香蕉觅云应助受伤的钢笔采纳,获得10
13秒前
务实的菓发布了新的文献求助10
13秒前
hmhu发布了新的文献求助10
16秒前
17秒前
林夕W完成签到,获得积分10
19秒前
19秒前
19秒前
认真的火完成签到,获得积分20
20秒前
十三发布了新的文献求助10
22秒前
小二郎应助拼搏菲音采纳,获得10
22秒前
老丫大侠完成签到 ,获得积分10
22秒前
23秒前
yaaaaajie完成签到,获得积分10
23秒前
东木雨发布了新的文献求助10
24秒前
Lucas应助云澈采纳,获得10
24秒前
善学以致用应助mingming采纳,获得10
25秒前
高高代珊完成签到 ,获得积分10
27秒前
kumiko发布了新的文献求助10
28秒前
28秒前
29秒前
打打应助核桃采纳,获得30
30秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Social Research Methods (4th Edition) by Maggie Walter (2019) 1030
A new approach to the extrapolation of accelerated life test data 1000
Indomethacinのヒトにおける経皮吸収 400
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 370
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3993711
求助须知:如何正确求助?哪些是违规求助? 3534447
关于积分的说明 11265414
捐赠科研通 3274169
什么是DOI,文献DOI怎么找? 1806326
邀请新用户注册赠送积分活动 883118
科研通“疑难数据库(出版商)”最低求助积分说明 809712