Improving topic modeling for literary studies: a hybrid model combined with Word2Vec visualization in the case of Robinson Crusoe

文字2vec 可视化 计算机科学 人工智能 情报检索 嵌入
作者
Haifeng Hui
出处
期刊:Digital Scholarship in the Humanities [Oxford University Press]
卷期号:40 (1): 151-163
标识
DOI:10.1093/llc/fqaf002
摘要

Abstract Topic modeling techniques, initially developed for the analysis of short texts, often face challenges when applied to literary research due to the complexity of the literary language and length of the text. Algorithms that typically yield clear and distinct topics for concise informative or opinionated texts often produce ambiguous and overlapping results in literary contexts. This article explores the application of one of the most popular topic modeling techniques, latent Dirichlet allocation (LDA), in the analysis of fiction and addresses these central questions regarding the effectiveness and interpretation of LDA topics through a case study of Robinson Crusoe. It proposes combining the Word2Vec method with LDA analysis to render topic modeling results more readable by mapping topics words in a three-dimensional space where semantically related words are placed close to each other. Furthermore, this integrated approach undergoes validation using various children’s editions of the novel and other works by the same author to assess its effectiveness. It is found that the combined method is capable of differentiating subtle changes in children’s editions and other novels. This study highlights the promising potential of LDA in literary research and underscores the importance of visualization techniques for nuanced interpretations of LDA topics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
呼呼啦啦发布了新的文献求助10
刚刚
刚刚
研友_ngk3bn完成签到,获得积分10
1秒前
Stella应助科研通管家采纳,获得10
1秒前
英俊的铭应助科研通管家采纳,获得10
1秒前
科研通AI6应助科研通管家采纳,获得10
1秒前
科目三应助科研通管家采纳,获得20
1秒前
1秒前
完美世界应助科研通管家采纳,获得10
1秒前
充电宝应助科研通管家采纳,获得10
1秒前
小蘑菇应助科研通管家采纳,获得10
1秒前
dew应助科研通管家采纳,获得10
1秒前
乐乐应助科研通管家采纳,获得10
2秒前
FashionBoy应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得20
2秒前
田様应助科研通管家采纳,获得10
2秒前
Stella应助科研通管家采纳,获得10
2秒前
烟花应助科研通管家采纳,获得10
2秒前
2秒前
无昵称完成签到 ,获得积分10
2秒前
阿拉蕾对完成签到,获得积分10
3秒前
失眠的蓝完成签到,获得积分10
3秒前
科研通AI2S应助李小皮采纳,获得10
4秒前
刘承昭完成签到,获得积分20
4秒前
5秒前
dy完成签到,获得积分10
6秒前
6秒前
灵巧芷蕊关注了科研通微信公众号
7秒前
8秒前
微笑的冬天完成签到,获得积分10
9秒前
进步完成签到,获得积分10
9秒前
HUI完成签到 ,获得积分10
9秒前
FashionBoy应助Banananan采纳,获得10
10秒前
和平港湾发布了新的文献求助10
10秒前
11秒前
YJH发布了新的文献求助10
11秒前
草莓雪酪发布了新的文献求助10
11秒前
充电宝应助Joker采纳,获得10
12秒前
先生完成签到,获得积分10
14秒前
Hh完成签到,获得积分10
14秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5600828
求助须知:如何正确求助?哪些是违规求助? 4686334
关于积分的说明 14843213
捐赠科研通 4677982
什么是DOI,文献DOI怎么找? 2538947
邀请新用户注册赠送积分活动 1505929
关于科研通互助平台的介绍 1471241