蛋白质稳态
原发性睫状体运动障碍
纤毛
细胞生物学
化学
神经科学
生物
医学
内科学
支气管扩张
肺
作者
Steven L. Brody,Jiehong Pan,Tao Huang,Jian Xu,Huihui Xu,Jeffrey R. Koenitzer,Steven K. Brennan,Rashmi Nanjundappa,Thomas G. Saba,Nisreen Rumman,Andrew Berical,Finn Hawkins,Xiangli Wang,Rui Zhang,Moe R. Mahjoub,Amjad Horani,Susan K. Dutcher
出处
期刊:Science Translational Medicine
[American Association for the Advancement of Science (AAAS)]
日期:2025-01-29
卷期号:17 (783)
标识
DOI:10.1126/scitranslmed.adp5173
摘要
Primary ciliary dyskinesia is a rare monogenic syndrome that is associated with chronic respiratory disease, infertility, and laterality defects. Although more than 50 genes causative of primary ciliary dyskinesia have been identified, variants in the genes encoding coiled-coil domain-containing 39 (CCDC39) and CCDC40 in particular cause severe disease that is not explained by loss of ciliary motility alone. Here, we sought to understand the consequences of these variants on cellular functions beyond impaired motility. We used human cells with pathogenic variants in CCDC39 and CCDC40, Chlamydomonas reinhardtii genetics, cryo-electron microscopy, and proteomics to define perturbations in ciliary assembly and cilia stability, as well as multiple motility-independent pathways. Analysis of proteomics of cilia from patient cells identified that the absence of the axonemal CCDC39/CCDC40 heterodimer resulted in the loss of a network of more than 90 ciliary structural proteins, including 14 that were defined as ciliary address recognition proteins, which provide docking for the missing structures. The absence of the network impaired microtubule architecture, activated cell quality control pathways, switched multiciliated cell fate to mucus-producing cells and resulted in a defective periciliary barrier. In CCDC39 variant cells, these phenotypes were reversed through expression of a normal CCDC39 transgene. These findings indicate that the CCDC39/CCDC40 heterodimer functions as a scaffold to support the assembly of an extensive network of ciliary proteins, whose loss results in both motility-dependent and motility-independent phenotypes that may explain the severity of disease. Gene therapy might be a potential treatment option to be explored in future studies.
科研通智能强力驱动
Strongly Powered by AbleSci AI