清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Risk Factors for Gastrointestinal Bleeding in Patients With Acute Myocardial Infarction: Multicenter Retrospective Cohort Study

医学 逻辑回归 回顾性队列研究 接收机工作特性 心肌梗塞 弗雷明翰风险评分 倾向得分匹配 队列 胃肠道出血 内科学 决策树 急诊医学 疾病 数据挖掘 计算机科学
作者
Yanqi Kou,Shicai Ye,Yuan Tian,Ke Yang,Ling Qin,Zhe Huang,Botao Luo,Yanping Ha,Liping Zhan,Ruyin Ye,Yujie Huang,Qing Zhang,Kun He,Mingkai Liang,Jieming Zheng,Hua‐Chih Huang,Chun-Yi Wu,Lei Ge,Yuping Yang
出处
期刊:Journal of Medical Internet Research 卷期号:27: e67346-e67346
标识
DOI:10.2196/67346
摘要

Background Gastrointestinal bleeding (GIB) is a severe and potentially life-threatening complication in patients with acute myocardial infarction (AMI), significantly affecting prognosis during hospitalization. Early identification of high-risk patients is essential to reduce complications, improve outcomes, and guide clinical decision-making. Objective This study aimed to develop and validate a machine learning (ML)–based model for predicting in-hospital GIB in patients with AMI, identify key risk factors, and evaluate the clinical applicability of the model for risk stratification and decision support. Methods A multicenter retrospective cohort study was conducted, including 1910 patients with AMI from the Affiliated Hospital of Guangdong Medical University (2005-2024). Patients were divided into training (n=1575) and testing (n=335) cohorts based on admission dates. For external validation, 1746 patients with AMI were included in the publicly available MIMIC-IV (Medical Information Mart for Intensive Care IV) database. Propensity score matching was adjusted for demographics, and the Boruta algorithm identified key predictors. A total of 7 ML algorithms—logistic regression, k-nearest neighbors, support vector machine, decision tree, random forest (RF), extreme gradient boosting, and neural networks—were trained using 10-fold cross-validation. The models were evaluated for the area under the receiver operating characteristic curve, accuracy, sensitivity, specificity, recall, F1-score, and decision curve analysis. Shapley additive explanations analysis ranked variable importance. Kaplan-Meier survival analysis evaluated the impact of GIB on short-term survival. Multivariate logistic regression assessed the relationship between coronary heart disease (CHD) and in-hospital GIB after adjusting for clinical variables. Results The RF model outperformed other ML models, achieving an area under the receiver operating characteristic curve of 0.77 in the training cohort, 0.77 in the testing cohort, and 0.75 in the validation cohort. Key predictors included red blood cell count, hemoglobin, maximal myoglobin, hematocrit, CHD, and other variables, all of which were strongly associated with GIB risk. Decision curve analysis demonstrated the clinical use of the RF model for early risk stratification. Kaplan-Meier survival analysis showed no significant differences in 7- and 15-day survival rates between patients with AMI with and without GIB (P=.83 for 7-day survival and P=.87 for 15-day survival). Multivariate logistic regression showed that CHD was an independent risk factor for in-hospital GIB (odds ratio 2.79, 95% CI 2.09-3.74). Stratified analyses by sex, age, occupation, marital status, and other subgroups consistently showed that the association between CHD and GIB remained robust across all subgroups. Conclusions The ML-based RF model provides a robust and clinically applicable tool for predicting in-hospital GIB in patients with AMI. By leveraging routinely available clinical and laboratory data, the model supports early risk stratification and personalized preventive strategies.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
dahai发布了新的文献求助10
1秒前
dahai完成签到,获得积分10
8秒前
tmobiusx完成签到,获得积分10
26秒前
31秒前
xiaogang127完成签到 ,获得积分10
37秒前
水兰色发布了新的文献求助30
38秒前
fogsea完成签到,获得积分0
44秒前
jfw完成签到 ,获得积分10
1分钟前
隐形曼青应助力王采纳,获得10
1分钟前
WLY完成签到 ,获得积分10
1分钟前
科研狗完成签到 ,获得积分10
1分钟前
浚稚完成签到 ,获得积分10
1分钟前
铜锣湾新之助完成签到 ,获得积分10
2分钟前
GGBond完成签到 ,获得积分10
2分钟前
wure10完成签到 ,获得积分10
2分钟前
aniu完成签到,获得积分10
2分钟前
力王完成签到,获得积分10
2分钟前
左丘冥发布了新的文献求助10
2分钟前
会笑的蜗牛完成签到 ,获得积分10
2分钟前
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
胖胖橘完成签到 ,获得积分10
3分钟前
力王发布了新的文献求助10
3分钟前
火星上惜天完成签到 ,获得积分10
3分钟前
今后应助cqnusq采纳,获得10
3分钟前
heidi完成签到 ,获得积分10
4分钟前
4分钟前
cqnusq发布了新的文献求助10
4分钟前
cqnusq完成签到,获得积分10
4分钟前
juan完成签到 ,获得积分10
4分钟前
5分钟前
微生完成签到 ,获得积分10
5分钟前
852应助缓慢珠采纳,获得10
5分钟前
Mr-Li-Happy发布了新的文献求助10
5分钟前
科研通AI2S应助科研通管家采纳,获得10
5分钟前
wang完成签到,获得积分10
5分钟前
缓慢珠完成签到,获得积分10
5分钟前
Tina应助Mr-Li-Happy采纳,获得50
5分钟前
蓝意完成签到,获得积分0
5分钟前
未完成完成签到,获得积分10
5分钟前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Les Mantodea de Guyane Insecta, Polyneoptera 1000
工业结晶技术 880
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3491367
求助须知:如何正确求助?哪些是违规求助? 3077983
关于积分的说明 9151302
捐赠科研通 2770610
什么是DOI,文献DOI怎么找? 1520544
邀请新用户注册赠送积分活动 704589
科研通“疑难数据库(出版商)”最低求助积分说明 702323