Accelerated photonic design of coolhouse film for photosynthesis via machine learning

光子学 计算机科学 光合作用 光电子学 材料科学 生物 植物
作者
Jinlei Li,Yi Jiang,Bo Li,Yihao Xu,Song Huan-zhi,Ning Xu,Peng Wang,Dayang Zhao,Zhe Liu,Sheng Shu,Juyou Wu,Miao Zhong,Yongguang Zhang,Kefeng Zhang,Bin Zhu,Qiang Li,Wei Li,Yongmin Liu,Shanhui Fan,Jia Zhu
出处
期刊:Nature Communications [Springer Nature]
卷期号:16 (1)
标识
DOI:10.1038/s41467-024-54983-8
摘要

Controlling the suitable light, temperature, and water is essential for plant photosynthesis. While greenhouses/warm-houses are effective in cold or dry climates by creating warm, humid environments, a cool-house that provides a cool local environment with minimal energy and water consumption is highly desirable but has yet to be realized in hot, water-scarce regions. Here, using a synergistic genetic algorithm and machine learning, we propose and demonstrate a coolhouse film that regulates temperature and water for photosynthesis without requiring additional energy or water. This scalable film, selected from hundreds of potential designs, selectively and precisely transmits sunlight needed for photosynthesis while reflecting excess heat, thereby reducing thermal load and evapotranspiration. Its optical properties also exhibit weak angle dependence. In demonstrations in subtropical and arid regions, the film reduces temperatures by 5–17 °C and cuts water loss by half, resulting in more than doubled biomass yield and survival rates. It also improves crop resistance to heat and drought in greenhouse cultivation. The integration of machine learning and photonics provides a powerful toolkit for designing photonic structures and devices aimed at sustainability. This study uses machine learning to design a coolhouse film that regulates temperature and water evaporation to maximize plant photosynthesis efficiency. The film selectively transmits the sunlight needed for photosynthesis, improving crop yield and survival rates in hot, arid regions.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
orixero应助那种采纳,获得10
2秒前
阳光的羊发布了新的文献求助20
2秒前
安德发布了新的文献求助30
2秒前
朱一龙发布了新的文献求助10
3秒前
搜集达人应助雪山飞龙采纳,获得10
3秒前
4秒前
KSCN完成签到,获得积分10
5秒前
绝尘发布了新的文献求助10
5秒前
234124发布了新的文献求助10
6秒前
香蕉觅云应助jyx采纳,获得10
6秒前
Akim应助阿九采纳,获得10
6秒前
7秒前
研友_VZG7GZ应助此木采纳,获得10
8秒前
深情安青应助江峰采纳,获得10
8秒前
ys关闭了ys文献求助
9秒前
Zn应助研狗要自由采纳,获得10
9秒前
10秒前
10秒前
无花果应助小半采纳,获得10
10秒前
万能图书馆应助绝尘采纳,获得10
11秒前
11秒前
13秒前
13秒前
13秒前
燕燕于飞发布了新的文献求助10
14秒前
852应助jojo采纳,获得10
14秒前
14秒前
那种发布了新的文献求助10
15秒前
15秒前
鱼鱼鱼完成签到,获得积分10
15秒前
15秒前
纯真的晓啸完成签到,获得积分10
16秒前
16秒前
16秒前
sinFlee完成签到,获得积分10
16秒前
17秒前
小白菜完成签到,获得积分10
18秒前
18秒前
scq发布了新的文献求助10
19秒前
sinFlee发布了新的文献求助10
19秒前
高分求助中
Production Logging: Theoretical and Interpretive Elements 2700
1.3μm GaAs基InAs量子点材料生长及器件应用 1000
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
Luis Lacasa - Sobre esto y aquello 700
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3526037
求助须知:如何正确求助?哪些是违规求助? 3106453
关于积分的说明 9280410
捐赠科研通 2804080
什么是DOI,文献DOI怎么找? 1539215
邀请新用户注册赠送积分活动 716511
科研通“疑难数据库(出版商)”最低求助积分说明 709472