亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting Childhood and Adolescence Hypertension: Analysis of Predictors Using Machine Learning

医学 接收机工作特性 随机森林 逻辑回归 队列 梯度升压 决策树 人口学 机器学习 人工智能 儿科 统计 内科学 数学 计算机科学 社会学
作者
Hengyan Liu,Weibin Kou,Yik‐Chung Wu,Pui Hing Chau,Thomas Chung,Dyt Fong
出处
期刊:Pediatrics [American Academy of Pediatrics]
标识
DOI:10.1542/peds.2024-066675
摘要

BACKGROUND There has been a substantial burden of hypertension in children and adolescents. Given the availability of primary prevention strategies, it is important to determine predictors for early identification of children and adolescents at risk of hypertension. This study aims to attempt and validate machine learning (ML) algorithms for accurately predicting blood pressure (BP) status (normal, prehypertension, and hypertension) over 1- and 3-year periods, identifying key predictors without compromising model performance. METHODS We included a population-based cohort of primary 1 to secondary 6 students (typically aged 6 to 18 years) during the academic years of 1995 to 1996 and 2019 to 2020 in Hong Kong. Thirty-six easy-assessed predictors were initially model childhood BP status. Multiple ML algorithms, decision tree, random forest, k-nearest neighbor, eXtreme Gradient Boosting (XGBoost), and multinomial logistic regression (MLR), were used. Model evaluation was performed by various accuracy metrics. The Shapley Additive Explanations (SHAP) was used to identify key features for both predictions. RESULTS A total of 923 301 and 602 179 visit pairs were used for the 1- and 3-year predictions, respectively. XGBoost demonstrated the highest prediction accuracies for 1-year (macro–area under the receiver operating characteristic curve [AUROC] = 0.92, micro-AUROC = 0.91) and 3-year (macro-AUROC = 0.91, micro-AUROC = 0.90) periods. The traditional MLR approach had the lowest accuracies for 1- (macro-AUROC = 0.70, micro-AUROC = 0.68) and 3-year (macro-AUROC = 0.70, micro-AUROC = 0.68) predictions. The SHAP values identified 17 key predictors without the need for direct BP measurements or laboratory tests. CONCLUSION ML prediction models can accurately predict childhood prehypertension and hypertension at 1 and 3 years, independent of BP and laboratory measurements. The identified key predictors may inform areas for personalized prevention in hypertension.

科研通智能强力驱动
Strongly Powered by AbleSci AI

祝大家在新的一年里科研腾飞
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
史浩岩发布了新的文献求助10
3秒前
14秒前
run发布了新的文献求助10
16秒前
wf完成签到,获得积分10
17秒前
852应助史浩岩采纳,获得10
20秒前
22秒前
雪白砖家发布了新的文献求助10
25秒前
37秒前
万能图书馆应助勤恳化蛹采纳,获得10
38秒前
派大星发布了新的文献求助10
41秒前
Sigyn完成签到,获得积分20
42秒前
44秒前
Sigyn发布了新的文献求助20
48秒前
科研通AI2S应助科研通管家采纳,获得10
50秒前
Hello应助科研通管家采纳,获得10
50秒前
50秒前
run完成签到,获得积分10
53秒前
派大星完成签到,获得积分10
57秒前
瘦瘦的寒珊完成签到 ,获得积分10
1分钟前
吴可之完成签到,获得积分10
1分钟前
1分钟前
Sigyn发布了新的文献求助10
1分钟前
Cathy完成签到,获得积分10
1分钟前
年轻的蘑菇完成签到,获得积分10
2分钟前
2分钟前
2分钟前
yyyy发布了新的文献求助10
2分钟前
2分钟前
bkagyin应助YHF2采纳,获得10
2分钟前
甘罗发布了新的文献求助10
3分钟前
3分钟前
打打应助甘罗采纳,获得10
3分钟前
3分钟前
YHF2发布了新的文献求助10
3分钟前
苏琪发布了新的文献求助10
3分钟前
wanci应助Chondrite采纳,获得10
3分钟前
3分钟前
李健应助苏琪采纳,获得10
3分钟前
3分钟前
Chondrite发布了新的文献求助10
3分钟前
高分求助中
Востребованный временем 2500
The Three Stars Each: The Astrolabes and Related Texts 1500
Les Mantodea de Guyane 1000
Very-high-order BVD Schemes Using β-variable THINC Method 970
Field Guide to Insects of South Africa 660
Foucault's Technologies Another Way of Cutting Reality 500
Forensic Chemistry 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3392992
求助须知:如何正确求助?哪些是违规求助? 3003360
关于积分的说明 8809058
捐赠科研通 2690151
什么是DOI,文献DOI怎么找? 1473479
科研通“疑难数据库(出版商)”最低求助积分说明 681591
邀请新用户注册赠送积分活动 674515