材料科学
胶质母细胞瘤
对偶(语法数字)
免疫疗法
异质结
纳米技术
双重角色
催化作用
癌症研究
免疫系统
光电子学
免疫学
医学
生物
组合化学
艺术
文学类
化学
生物化学
作者
Jiamin Ye,Yueyue Fan,Yong Kang,Mengbin Ding,Gaoli Niu,Jinmei Yang,Ruiyan Li,Xiaoli Wu,Lei Zhu,Xiaoyuan Ji
标识
DOI:10.1002/adfm.202416265
摘要
Abstract The existence of the blood–brain barrier (BBB) and the characteristics of the immunosuppressive microenvironment in glioblastoma (GBM) present significant challenges for targeted GBM therapy. To address this, a biomimetic hybrid cell membrane‐modified dual‐driven heterojunction nanomotor (HM@MnO 2 ‐AuNR‐SiO 2 ) is proposed for targeted GBM treatment. These nanomotors are designed to bypass the BBB and target glioma regions by mimicking the surface characteristics of GBM and macrophage membranes. More importantly, the MnO 2 ‐AuNR‐SiO 2 heterojunction structure enables dual‐driven propulsion through near‐infrared‐II (NIR‐II) light and oxygen bubbles, allowing effective treatment at deep tumor sites. Meanwhile, the plasmonic AuNR‐MnO 2 heterostructure facilitates the separation of electron–hole pairs and generates reactive oxygen species (ROS), inducing immunogenic tumor cell death under NIR‐II laser irradiation. Furthermore, MnO 2 in the tumor microenvironment reacts to release Mn 2+ ions, activating the cGAS‐STING pathway and enhancing antitumor immunity. In vitro and in vivo experiments demonstrate that these dual‐driven biomimetic nanomotors achieve active targeting and deep tumor infiltration, promoting M1 macrophage polarization, dendritic cell maturation, and effector T‐cell activation, thereby enhancing GBM catalysis and immunotherapy through ROS production and STING pathway activation.
科研通智能强力驱动
Strongly Powered by AbleSci AI