Fish‐Finder: A robust small target detection method for aquaculture fish in low‐quality underwater images

水下 计算机科学 目标检测 水准点(测量) 最小边界框 人工智能 跳跃式监视 水产养殖 计算机视觉 克里金 生物 模式识别(心理学) 渔业 机器学习 图像(数学) 地图学 地质学 地理 海洋学
作者
Liang Liu,Junfeng Wu,Haiyan Zhao,Han Kong,Tao Zheng,Boyu Qu,Hong Yu
出处
期刊:Journal of Fish Biology [Wiley]
标识
DOI:10.1111/jfb.15992
摘要

Abstract Underwater fish object detection serves as a pivotal research direction in marine biology, aquaculture management, and computer vision, yet it poses substantial challenges due to the complexity of underwater environments, occultations, and the small‐sized and frequently moving fish in aquaculture. Addressing these challenges, we propose a novel underwater fish object detection algorithm named Fish‐Finder. First, we engendered a structure titled “C2fBF,” utilizing the dual‐path routing attention protocol of BiFormer. The primary objective of this structure is to alleviate the perturbations induced by underwater intricacies during the phase of downsampling in the backbone network, thereby discerning and conserving finer contextual features. Subsequently, we co‐opted the RepGFPN method within our neck network—a distinctive approach that adeptly merges high‐level semantic constructs with low‐level spatial specifics, thus fortifying its multi‐scale detection prowess. Then, in an endeavor to diminish the sensitivity toward positional aberrations during the detection of diminutive aquatic creatures, we incorporated a novel bounding box regression loss function, the Wasserstein loss, to the existing CIoU. This innovative function gauges the congruity between the predicted bounding box Gaussian distribution and the reference bounding box Gaussian distribution. Finally, in regard to the dataset, we independently assembled a specific dataset termed “SmallFish.” This unique dataset, meticulously designed for the detection of small‐scale fish within intricate underwater settings, includes 5000 annotated images of small fish. Experimental results demonstrate that, compared to the state‐of‐the‐art detection methods, our proposed method improves the accuracy by and , and mean average precision (mAP) increases and in public dataset Kaggle‐Fish and our SmallFish dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
oasissmz完成签到,获得积分10
刚刚
北冥鱼完成签到,获得积分10
2秒前
2秒前
anchor发布了新的文献求助10
2秒前
rjj001022发布了新的文献求助10
2秒前
陶醉元彤完成签到 ,获得积分10
5秒前
5秒前
希望天下0贩的0应助ZepHyR采纳,获得10
5秒前
5秒前
机智的南露完成签到,获得积分10
5秒前
陶醉的土豆完成签到,获得积分10
6秒前
丰知然应助cui采纳,获得10
6秒前
6秒前
6秒前
细心飞鸟完成签到,获得积分10
6秒前
33完成签到,获得积分10
6秒前
聪慧千雁发布了新的文献求助10
7秒前
bazinga应助修修勾采纳,获得10
7秒前
8秒前
8秒前
甜甜初柔完成签到,获得积分10
9秒前
汉堡包应助phw2333采纳,获得30
9秒前
长情的猕猴桃完成签到,获得积分10
10秒前
holmes发布了新的文献求助10
10秒前
11秒前
赖向珊发布了新的文献求助10
12秒前
粗暴的遥发布了新的文献求助10
12秒前
淡然冬灵应助张张采纳,获得10
12秒前
12秒前
14秒前
帅哥完成签到,获得积分10
14秒前
15秒前
欧阳人英发布了新的文献求助30
15秒前
16秒前
带头大哥应助萧水白采纳,获得100
17秒前
刘东龙发布了新的文献求助10
17秒前
宜醉宜游宜睡应助happy采纳,获得10
17秒前
小蘑菇应助研友_enPJa8采纳,获得10
20秒前
21秒前
诸葛雪柳发布了新的文献求助10
21秒前
高分求助中
Effect of reactor temperature on FCC yield 2000
Production Logging: Theoretical and Interpretive Elements 1500
Very-high-order BVD Schemes Using β-variable THINC Method 1000
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Uncertainty Quantification: Theory, Implementation, and Applications, Second Edition 800
錢鍾書楊絳親友書札 600
A new species of Coccus (Homoptera: Coccoidea) from Malawi 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3288834
求助须知:如何正确求助?哪些是违规求助? 2926086
关于积分的说明 8425326
捐赠科研通 2597126
什么是DOI,文献DOI怎么找? 1417020
科研通“疑难数据库(出版商)”最低求助积分说明 659556
邀请新用户注册赠送积分活动 642000