亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Fish‐Finder: A robust small target detection method for aquaculture fish in low‐quality underwater images

水下 计算机科学 目标检测 水准点(测量) 最小边界框 人工智能 跳跃式监视 水产养殖 计算机视觉 克里金 生物 模式识别(心理学) 渔业 机器学习 图像(数学) 地图学 地质学 地理 海洋学
作者
Liang Liu,Junfeng Wu,Haiyan Zhao,Han Kong,Tao Zheng,Boyu Qu,Hong Yu
出处
期刊:Journal of Fish Biology [Wiley]
标识
DOI:10.1111/jfb.15992
摘要

Abstract Underwater fish object detection serves as a pivotal research direction in marine biology, aquaculture management, and computer vision, yet it poses substantial challenges due to the complexity of underwater environments, occultations, and the small‐sized and frequently moving fish in aquaculture. Addressing these challenges, we propose a novel underwater fish object detection algorithm named Fish‐Finder. First, we engendered a structure titled “C2fBF,” utilizing the dual‐path routing attention protocol of BiFormer. The primary objective of this structure is to alleviate the perturbations induced by underwater intricacies during the phase of downsampling in the backbone network, thereby discerning and conserving finer contextual features. Subsequently, we co‐opted the RepGFPN method within our neck network—a distinctive approach that adeptly merges high‐level semantic constructs with low‐level spatial specifics, thus fortifying its multi‐scale detection prowess. Then, in an endeavor to diminish the sensitivity toward positional aberrations during the detection of diminutive aquatic creatures, we incorporated a novel bounding box regression loss function, the Wasserstein loss, to the existing CIoU. This innovative function gauges the congruity between the predicted bounding box Gaussian distribution and the reference bounding box Gaussian distribution. Finally, in regard to the dataset, we independently assembled a specific dataset termed “SmallFish.” This unique dataset, meticulously designed for the detection of small‐scale fish within intricate underwater settings, includes 5000 annotated images of small fish. Experimental results demonstrate that, compared to the state‐of‐the‐art detection methods, our proposed method improves the accuracy by and , and mean average precision (mAP) increases and in public dataset Kaggle‐Fish and our SmallFish dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
香蕉觅云应助读书的时候采纳,获得10
刚刚
2秒前
Akim应助温婉的不弱采纳,获得10
3秒前
尊敬的雪兰完成签到,获得积分20
7秒前
无极微光应助小吴采纳,获得20
18秒前
小枣完成签到 ,获得积分10
20秒前
31秒前
33秒前
烂漫的涫完成签到 ,获得积分10
35秒前
温柔锦程发布了新的文献求助10
38秒前
等意送汝完成签到 ,获得积分10
43秒前
哑巴和喇叭完成签到 ,获得积分10
43秒前
kei完成签到 ,获得积分10
46秒前
54秒前
科研通AI6.1应助panda采纳,获得30
55秒前
m李完成签到 ,获得积分10
1分钟前
科研通AI6应助科研通管家采纳,获得10
1分钟前
Orange应助科研通管家采纳,获得10
1分钟前
传奇3应助科研通管家采纳,获得10
1分钟前
1分钟前
杨天天完成签到 ,获得积分0
1分钟前
Akim应助读书的时候采纳,获得10
1分钟前
科研通AI6.1应助WDD采纳,获得10
1分钟前
李爱国应助大意的念寒采纳,获得10
1分钟前
Iris完成签到 ,获得积分10
1分钟前
1分钟前
向北要上岸完成签到 ,获得积分10
1分钟前
乐乐应助LaaBi采纳,获得10
1分钟前
WDD发布了新的文献求助10
1分钟前
1分钟前
2分钟前
桐夜完成签到 ,获得积分10
2分钟前
YB发布了新的文献求助10
2分钟前
2分钟前
大大王发布了新的文献求助10
2分钟前
2分钟前
2分钟前
w。发布了新的文献求助10
2分钟前
LaaBi发布了新的文献求助10
2分钟前
2分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Human Embryology and Developmental Biology 7th Edition 2000
The Developing Human: Clinically Oriented Embryology 12th Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
„Semitische Wissenschaften“? 1110
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5739381
求助须知:如何正确求助?哪些是违规求助? 5385826
关于积分的说明 15339673
捐赠科研通 4881965
什么是DOI,文献DOI怎么找? 2624032
邀请新用户注册赠送积分活动 1572725
关于科研通互助平台的介绍 1529527