Fish‐Finder: A robust small target detection method for aquaculture fish in low‐quality underwater images

水下 计算机科学 目标检测 水准点(测量) 最小边界框 人工智能 跳跃式监视 水产养殖 计算机视觉 克里金 生物 模式识别(心理学) 渔业 机器学习 图像(数学) 地图学 地质学 地理 海洋学
作者
Liang Liu,Junfeng Wu,Haiyan Zhao,Han Kong,Tao Zheng,Boyu Qu,Hong Yu
出处
期刊:Journal of Fish Biology [Wiley]
标识
DOI:10.1111/jfb.15992
摘要

Abstract Underwater fish object detection serves as a pivotal research direction in marine biology, aquaculture management, and computer vision, yet it poses substantial challenges due to the complexity of underwater environments, occultations, and the small‐sized and frequently moving fish in aquaculture. Addressing these challenges, we propose a novel underwater fish object detection algorithm named Fish‐Finder. First, we engendered a structure titled “C2fBF,” utilizing the dual‐path routing attention protocol of BiFormer. The primary objective of this structure is to alleviate the perturbations induced by underwater intricacies during the phase of downsampling in the backbone network, thereby discerning and conserving finer contextual features. Subsequently, we co‐opted the RepGFPN method within our neck network—a distinctive approach that adeptly merges high‐level semantic constructs with low‐level spatial specifics, thus fortifying its multi‐scale detection prowess. Then, in an endeavor to diminish the sensitivity toward positional aberrations during the detection of diminutive aquatic creatures, we incorporated a novel bounding box regression loss function, the Wasserstein loss, to the existing CIoU. This innovative function gauges the congruity between the predicted bounding box Gaussian distribution and the reference bounding box Gaussian distribution. Finally, in regard to the dataset, we independently assembled a specific dataset termed “SmallFish.” This unique dataset, meticulously designed for the detection of small‐scale fish within intricate underwater settings, includes 5000 annotated images of small fish. Experimental results demonstrate that, compared to the state‐of‐the‐art detection methods, our proposed method improves the accuracy by and , and mean average precision (mAP) increases and in public dataset Kaggle‐Fish and our SmallFish dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
1秒前
完美世界应助小诗采纳,获得10
1秒前
1秒前
Ava应助top采纳,获得10
1秒前
张瑾伃完成签到,获得积分10
1秒前
doctoryu完成签到,获得积分20
1秒前
萨达完成签到,获得积分10
1秒前
2秒前
NexusExplorer应助mmmy采纳,获得10
3秒前
今后应助mmmy采纳,获得10
3秒前
顺心夜南应助Yuru采纳,获得100
3秒前
3秒前
3秒前
4秒前
Aipoi发布了新的文献求助10
5秒前
5秒前
5秒前
冯俞淇发布了新的文献求助10
5秒前
5秒前
5秒前
5秒前
6秒前
7秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
852应助被风吹过的路采纳,获得10
8秒前
8秒前
吱吱发布了新的文献求助10
9秒前
贪玩半雪发布了新的文献求助10
9秒前
9秒前
9秒前
科研dog发布了新的文献求助10
10秒前
lizhen发布了新的文献求助10
10秒前
chen完成签到,获得积分10
11秒前
aka2012发布了新的文献求助10
11秒前
enen发布了新的文献求助10
11秒前
坦率尔蝶完成签到 ,获得积分10
11秒前
huodian4发布了新的文献求助10
11秒前
高分求助中
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
King Tyrant 680
Objective or objectionable? Ideological aspects of dictionaries 360
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5582167
求助须知:如何正确求助?哪些是违规求助? 4666373
关于积分的说明 14762023
捐赠科研通 4608313
什么是DOI,文献DOI怎么找? 2528621
邀请新用户注册赠送积分活动 1497921
关于科研通互助平台的介绍 1466671