Fish‐Finder: A robust small target detection method for aquaculture fish in low‐quality underwater images

水下 计算机科学 目标检测 水准点(测量) 最小边界框 人工智能 跳跃式监视 水产养殖 计算机视觉 克里金 生物 模式识别(心理学) 渔业 机器学习 图像(数学) 地图学 地质学 地理 海洋学
作者
Liang Liu,Junfeng Wu,Haiyan Zhao,Han Kong,Tao Zheng,Boyu Qu,Hong Yu
出处
期刊:Journal of Fish Biology [Wiley]
标识
DOI:10.1111/jfb.15992
摘要

Abstract Underwater fish object detection serves as a pivotal research direction in marine biology, aquaculture management, and computer vision, yet it poses substantial challenges due to the complexity of underwater environments, occultations, and the small‐sized and frequently moving fish in aquaculture. Addressing these challenges, we propose a novel underwater fish object detection algorithm named Fish‐Finder. First, we engendered a structure titled “C2fBF,” utilizing the dual‐path routing attention protocol of BiFormer. The primary objective of this structure is to alleviate the perturbations induced by underwater intricacies during the phase of downsampling in the backbone network, thereby discerning and conserving finer contextual features. Subsequently, we co‐opted the RepGFPN method within our neck network—a distinctive approach that adeptly merges high‐level semantic constructs with low‐level spatial specifics, thus fortifying its multi‐scale detection prowess. Then, in an endeavor to diminish the sensitivity toward positional aberrations during the detection of diminutive aquatic creatures, we incorporated a novel bounding box regression loss function, the Wasserstein loss, to the existing CIoU. This innovative function gauges the congruity between the predicted bounding box Gaussian distribution and the reference bounding box Gaussian distribution. Finally, in regard to the dataset, we independently assembled a specific dataset termed “SmallFish.” This unique dataset, meticulously designed for the detection of small‐scale fish within intricate underwater settings, includes 5000 annotated images of small fish. Experimental results demonstrate that, compared to the state‐of‐the‐art detection methods, our proposed method improves the accuracy by and , and mean average precision (mAP) increases and in public dataset Kaggle‐Fish and our SmallFish dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
Ren发布了新的文献求助10
2秒前
orixero应助KYpaopao采纳,获得10
2秒前
今后应助黄哈哈采纳,获得10
2秒前
自觉山柏完成签到,获得积分10
3秒前
4秒前
4秒前
5秒前
CipherSage应助平常的紫蓝采纳,获得10
6秒前
7秒前
xixi很困完成签到 ,获得积分10
8秒前
10秒前
zcy发布了新的文献求助10
10秒前
10秒前
香蕉觅云应助云岫采纳,获得10
10秒前
10秒前
11秒前
全若之发布了新的文献求助10
12秒前
爆米花应助谷大喵唔采纳,获得10
13秒前
小马甲应助旺仔Mario采纳,获得10
13秒前
思源应助乘风采纳,获得10
13秒前
PT177245发布了新的文献求助10
14秒前
14秒前
16秒前
17秒前
17秒前
陈某关注了科研通微信公众号
18秒前
zcy完成签到,获得积分10
19秒前
EgoElysia关注了科研通微信公众号
19秒前
天天快乐应助未道采纳,获得10
20秒前
归尘发布了新的文献求助10
20秒前
21秒前
隐形曼青应助科研通管家采纳,获得10
21秒前
猪猪hero应助科研通管家采纳,获得10
21秒前
orixero应助科研通管家采纳,获得10
22秒前
情怀应助科研通管家采纳,获得10
22秒前
pluto应助科研通管家采纳,获得10
22秒前
22秒前
田様应助科研通管家采纳,获得10
22秒前
22秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988827
求助须知:如何正确求助?哪些是违规求助? 3531197
关于积分的说明 11252739
捐赠科研通 3269830
什么是DOI,文献DOI怎么找? 1804815
邀请新用户注册赠送积分活动 881915
科研通“疑难数据库(出版商)”最低求助积分说明 809028