Fish‐Finder: A robust small target detection method for aquaculture fish in low‐quality underwater images

水下 计算机科学 目标检测 水准点(测量) 最小边界框 人工智能 跳跃式监视 水产养殖 计算机视觉 克里金 生物 模式识别(心理学) 渔业 机器学习 图像(数学) 地图学 海洋学 地质学 地理
作者
Liang Liu,Junfeng Wu,Haiyan Zhao,Han Kong,Tao Zheng,Boyu Qu,Hong Yu
出处
期刊:Journal of Fish Biology [Wiley]
标识
DOI:10.1111/jfb.15992
摘要

Abstract Underwater fish object detection serves as a pivotal research direction in marine biology, aquaculture management, and computer vision, yet it poses substantial challenges due to the complexity of underwater environments, occultations, and the small‐sized and frequently moving fish in aquaculture. Addressing these challenges, we propose a novel underwater fish object detection algorithm named Fish‐Finder. First, we engendered a structure titled “C2fBF,” utilizing the dual‐path routing attention protocol of BiFormer. The primary objective of this structure is to alleviate the perturbations induced by underwater intricacies during the phase of downsampling in the backbone network, thereby discerning and conserving finer contextual features. Subsequently, we co‐opted the RepGFPN method within our neck network—a distinctive approach that adeptly merges high‐level semantic constructs with low‐level spatial specifics, thus fortifying its multi‐scale detection prowess. Then, in an endeavor to diminish the sensitivity toward positional aberrations during the detection of diminutive aquatic creatures, we incorporated a novel bounding box regression loss function, the Wasserstein loss, to the existing CIoU. This innovative function gauges the congruity between the predicted bounding box Gaussian distribution and the reference bounding box Gaussian distribution. Finally, in regard to the dataset, we independently assembled a specific dataset termed “SmallFish.” This unique dataset, meticulously designed for the detection of small‐scale fish within intricate underwater settings, includes 5000 annotated images of small fish. Experimental results demonstrate that, compared to the state‐of‐the‐art detection methods, our proposed method improves the accuracy by and , and mean average precision (mAP) increases and in public dataset Kaggle‐Fish and our SmallFish dataset, respectively.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
流年完成签到 ,获得积分10
刚刚
MADKAI发布了新的文献求助10
刚刚
xunxunmimi完成签到,获得积分10
1秒前
1秒前
1秒前
刘星星发布了新的文献求助10
2秒前
CodeCraft应助科研菜鸟采纳,获得20
2秒前
zyyyyyyyyyyy完成签到,获得积分10
3秒前
4秒前
研友_8yN60L发布了新的文献求助30
4秒前
打打应助柳七采纳,获得10
5秒前
零零二完成签到 ,获得积分10
5秒前
韭菜盒子发布了新的文献求助10
6秒前
Maestro_S完成签到,获得积分0
6秒前
volzzz发布了新的文献求助10
6秒前
wgglegg完成签到,获得积分10
6秒前
科研通AI5应助小胖鱼采纳,获得10
6秒前
酷波er应助黄超采纳,获得10
6秒前
6秒前
大智若愚啊完成签到,获得积分20
6秒前
7秒前
7秒前
7秒前
彬彬发布了新的文献求助10
7秒前
健壮丹妗完成签到 ,获得积分10
7秒前
Orange应助铸一字错采纳,获得10
7秒前
7秒前
Accept应助阿烨采纳,获得10
9秒前
欧阳小枫发布了新的文献求助10
10秒前
11秒前
Heidi完成签到 ,获得积分10
11秒前
见雨鱼发布了新的文献求助10
11秒前
学术扛把子完成签到 ,获得积分10
11秒前
Lucas应助陈某某采纳,获得10
11秒前
尊敬的钥匙完成签到,获得积分10
12秒前
13秒前
13秒前
赘婿应助无情的白桃采纳,获得10
13秒前
习习应助zhu96114748采纳,获得10
14秒前
英姑应助韭菜盒子采纳,获得10
14秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740