An Artificial Intelligence–Driven Preoperative Radiomic Subtype for Predicting the Prognosis and Treatment Response of Patients with Papillary Thyroid Carcinoma

医学 甲状腺癌 乳头状癌 肿瘤科 内科学 甲状腺 病理 放射科
作者
Qiang Li,Weituo Zhang,Tian Liao,Yi Gao,Yanzhi Zhang,Anqi Jin,Ben Ma,Ning Qu,Huan Zhang,Xiangqian Zheng,Dapeng Li,Xinwei Yun,Jingzhu Zhao,Herbert Yu,Ming Gao,Yu Wang,Biyun Qian
出处
期刊:Clinical Cancer Research [American Association for Cancer Research]
卷期号:31 (1): 139-150 被引量:3
标识
DOI:10.1158/1078-0432.ccr-24-2356
摘要

Abstract Purpose: From 8% to 28% of patients with papillary thyroid carcinoma (PTC) experience recurrence, complicating risk stratification and treatment. We previously identified an inflammatory molecular subtype of PTC associated with poor prognosis. Based on this subtype, we aimed to develop and validate a noninvasive radiomic signature to predict prognosis and treatment response in patients with PTC. Experimental Design: We collected preoperative ultrasound images from two large independent centers (n = 2,506) to develop and validate a deep learning radiomics signature of inflammation (DLRI) for predicting the inflammatory subtype of PTC, including its correlation with prognosis and anti-inflammatory traditional Chinese medicine (TCM) treatment. Training set 1 (n = 64) and internal validation set 2 (n = 1,108) were from Tianjin Medical University Cancer Institute and Hospital. External validation sets 1 (n = 76) and 2 (n = 1,258) were from Fudan University Shanghai Cancer Center. Results: We developed a DLRI to accurately predict PTC’s inflammatory subtype (AUC = 0.97 in training set 1 and AUC = 0.82 in external validation set 1). High-risk DLRI was significantly associated with poor disease-free survival in the first cohort [HR = 16.49, 95% confidence interval (CI), 7.92–34.35, P < 0.001] and second cohort (HR = 5.42, 95% CI, 3.67–8.02, P < 0.001). The DLRI independently predicted disease-free survival, irrespective of clinicopathologic variables (P < 0.001 for all). Furthermore, patients with high-risk DLRI were likely to benefit from anti-inflammatory TCM treatment (HR = 0.19, 95% CI, 0.06–0.55, P = 0.002), whereas those with low-risk DLRI did not. Conclusions: DLRI is a reliable noninvasive tool for evaluating prognosis and guiding anti-inflammatory TCM treatment in patients with PTC. Prospective studies are needed to confirm these findings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
chenhouhan发布了新的文献求助20
1秒前
2秒前
2秒前
leez发布了新的文献求助10
3秒前
哎呦你干嘛完成签到,获得积分20
3秒前
Su发布了新的文献求助10
4秒前
pluto应助独特的绮山采纳,获得10
4秒前
wanci应助星星采纳,获得10
5秒前
5秒前
cetomacrogol完成签到,获得积分10
5秒前
6秒前
感动的小懒虫完成签到,获得积分20
6秒前
6秒前
哈哈哈完成签到,获得积分10
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
ybybyb1213发布了新的文献求助30
7秒前
yomi完成签到 ,获得积分10
9秒前
9秒前
9秒前
10秒前
热心雪一完成签到 ,获得积分10
10秒前
10秒前
pluto应助平头张采纳,获得10
10秒前
量子星尘发布了新的文献求助10
11秒前
liukanhai完成签到,获得积分10
11秒前
zzgpku应助科研通管家采纳,获得10
11秒前
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
zzgpku应助科研通管家采纳,获得10
11秒前
斯文败类应助科研通管家采纳,获得10
11秒前
11秒前
Lucas应助科研通管家采纳,获得10
11秒前
小马甲应助科研通管家采纳,获得30
11秒前
12秒前
12秒前
小马甲应助科研通管家采纳,获得30
12秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
从k到英国情人 1500
Ägyptische Geschichte der 21.–30. Dynastie 1100
„Semitische Wissenschaften“? 1100
Russian Foreign Policy: Change and Continuity 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5729696
求助须知:如何正确求助?哪些是违规求助? 5320101
关于积分的说明 15317350
捐赠科研通 4876657
什么是DOI,文献DOI怎么找? 2619509
邀请新用户注册赠送积分活动 1569008
关于科研通互助平台的介绍 1525595