医学
甲状腺癌
乳头状癌
癌
甲状腺切除术
肿瘤科
放射科
内科学
甲状腺
外科
作者
Qiang Li,Weituo Zhang,Tian Liao,Gao Yi,Yanzhi Zhang,Anqi Jin,Ben Ma,Ning Qu,Huan Zhang,Xiangqian Zheng,Dapeng Li,Xinwei Yun,Jingzhu Zhao,Herbert Yu,Ming Gao,Yu Wang,Biyun Qian
标识
DOI:10.1158/1078-0432.ccr-24-2356
摘要
Abstract Purpose: 8-28% of Papillary thyroid carcinoma (PTC) experience recurrence, complicating risk stratification and treatment. We previously identified an inflammatory molecular subtype of PTC associated with poor prognosis. Based on this subtype, we aimed to develop and validate a noninvasive radiomic signature to predict prognosis and treatment response in PTC patients. Experimental Design: We collected preoperative ultrasound images from two large independent centers (n=2506) to develop and validate a Deep Learning Radiomics signature of Inflammation (DLRI) for predicting the inflammatory subtype of PTC, including its correlation with prognosis and anti-inflammatory traditional Chinese medicine (TCM) treatment. Training set 1 (n=64) and internal validation set 2 (n=1108) were from Tianjin Medical University Cancer Institute and Hospital. External validation set 1 (n=76) and 2 (n=1258) were from Fudan University Shanghai Cancer Center. Results: We developed DLRI to accurately predict PTC's inflammatory subtype (AUC=0.97 in the training set 1 and AUC=0.82 in the external validation set 1). High-risk DLRI was significantly associated with poor disease-free survival in the first cohort (HR=16.49, 95% CI: 7.92-34.35, P<0.001) and second cohort (HR=5.42, 95%: 3.67-8.02, P<0.001). DLRI independently predicted disease-free survival, irrespective of clinicopathological variables (P<0.001 for all). Furthermore, patients with high-risk DLRI were likely to benefit from anti-inflammatory TCM treatment (HR=0.19, 95% CI: 0.06-0.55, P=0.002), whereas those in low-risk DLRI did not. Conclusions: DLRI is a reliable noninvasive tool for evaluating prognosis and guiding anti-inflammatory TCM treatment in PTC patients. Prospective studies are needed to confirm these findings.
科研通智能强力驱动
Strongly Powered by AbleSci AI