环氧乙烷
离子键合
阴极
氧化物
材料科学
接口(物质)
固态
乙烯
离子电导率
聚乙烯
热传导
化学工程
化学物理
纳米技术
化学
物理化学
离子
聚合物
有机化学
工程类
催化作用
复合材料
电极
共聚物
冶金
电解质
毛细管数
毛细管作用
作者
Zi-Xiang Kong,Zhe Xiong,Jian‐Fang Wu,Jin Jun,Yuxiao Lin,Yunsong Li,Jilei Liu
出处
期刊:ACS energy letters
[American Chemical Society]
日期:2024-12-18
卷期号:: 287-295
标识
DOI:10.1021/acsenergylett.4c02840
摘要
The implementation of energy-dense poly(ethylene oxide) (PEO)-based all-solid-state lithium batteries is impeded by the limited working voltage and underexplored cathode interfacial reaction mechanism. Here, through analyzing interfacial resistances using the Wagner model, the change of the interfacial reaction parameter (k) is proposed to unveil the ionic-to-electronic conduction transition and kinetic formation mechanism of the cathode-electrolyte-interphase (CEI) under voltage ≥4.2 V, thereby constructing ionic conductor-dominated CEIs to enable 4.4 V batteries. With the open-circuit voltage ≥4.2 V, k1 and k2 are derived; k2 is smaller than k1, caused by the enhanced electronic conduction and indicating the ionic-to-electronic conduction transition of the CEI. Moreover, by introducing LiPO2F2 in high-concentration solid electrolytes, ionic conductors Li3PO4 and LixPOFy dominate the CEI, overcoming the ionic-to-electronic conduction transition; the resulting 4.4 V cell bears a discharge capacity of 130 mAh/g with a retention of 90% after 100 cycles, about 2 times that of the normal PEO-based cell.
科研通智能强力驱动
Strongly Powered by AbleSci AI