Mechano-Graded Contact-Electrification Interfaces Based Artificial Mechanoreceptors for Robotic Adaptive Reception

接触带电 材料科学 摩擦电效应 卷积神经网络 机器人 灵敏度(控制系统) 线性 变形(气象学) 弯曲 计算机科学 电子皮肤 人工智能 纳米技术 复合材料 电子工程 工程类
作者
Lei Hao,Yixin Cao,Gang Sun,Peihao Huang,Xu Xue,Bohan Lu,Jiawei Yan,Yuxi Wang,Eng Gee Lim,Xin Tu,Yina Liu,Xuhui Sun,Chun Zhao,Zhen Wen
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c14285
摘要

Triboelectrification-based artificial mechanoreceptors (TBAMs) is able to convert mechanical stimuli directly into electrical signals, realizing self-adaptive protection and human–machine interactions of robots. However, traditional contact–electrification interfaces are prone to reaching their deformation limits under large pressures, resulting in a relatively narrow linear range. In this work, we fabricated mechano-graded microstructures to modulate the strain behavior of contact–electrification interfaces, simultaneously endowing the TBAMs with a high sensitivity and a wide linear detection range. The presence of step regions within the mechanically graded microstructures helps contact–electrification interfaces resist fast compressive deformation and provides a large effective area. The highly sensitive linear region of TBAM with 1.18 V/kPa can be effectively extended to four times of that for the devices with traditional interfaces. In addition, the device is able to maintain a high sensitivity of 0.44 V/kPa even under a large pressure from 40 to 600 kPa. TBAM has been successfully used as an electronic skin to realize self-adaptive protection and grip strength perception for a commercial robot arm. Finally, a high angle resolution of 2° and an excellent linearity of 99.78% for joint bending detection were also achieved. With the aid of a convolutional neural network algorithm, a data glove based on TBAMs realizes a high accuracy rate of 95.5% for gesture recognition in a dark environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
孤独的狼发布了新的文献求助10
1秒前
彭于晏应助巧克力饼干采纳,获得10
2秒前
bkagyin应助活泼的抽屉采纳,获得30
3秒前
科研通AI2S应助杨洋洋采纳,获得10
3秒前
4秒前
情怀应助听弦采纳,获得10
4秒前
青青完成签到,获得积分10
4秒前
项之桃完成签到,获得积分10
5秒前
6秒前
7秒前
好旺完成签到,获得积分10
7秒前
饼干玮玮完成签到 ,获得积分10
10秒前
杨元兰完成签到,获得积分10
11秒前
liu发布了新的文献求助10
11秒前
很靠近海完成签到,获得积分10
12秒前
sxwang发布了新的文献求助10
12秒前
bin关注了科研通微信公众号
12秒前
Ironhanhan发布了新的文献求助10
13秒前
肖建强完成签到,获得积分20
13秒前
14秒前
14秒前
与枫完成签到,获得积分10
15秒前
sissiarno应助jingyu采纳,获得50
16秒前
小白发布了新的文献求助10
17秒前
Christal完成签到,获得积分10
17秒前
957144269发布了新的文献求助10
17秒前
空青关注了科研通微信公众号
17秒前
18秒前
19秒前
20秒前
某竖特别菜完成签到 ,获得积分10
20秒前
听弦发布了新的文献求助10
20秒前
20秒前
xun发布了新的文献求助10
21秒前
CC发布了新的文献求助10
23秒前
25秒前
袁国锋发布了新的文献求助10
26秒前
26秒前
上官若男应助年轻的芒果采纳,获得10
27秒前
华仔应助与枫采纳,获得10
27秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
Shining Light on the Dark Side of Personality 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3306775
求助须知:如何正确求助?哪些是违规求助? 2940581
关于积分的说明 8497765
捐赠科研通 2614785
什么是DOI,文献DOI怎么找? 1428522
科研通“疑难数据库(出版商)”最低求助积分说明 663442
邀请新用户注册赠送积分活动 648263