Mechano-Graded Contact-Electrification Interfaces Based Artificial Mechanoreceptors for Robotic Adaptive Reception

接触带电 材料科学 摩擦电效应 卷积神经网络 机器人 灵敏度(控制系统) 线性 变形(气象学) 弯曲 计算机科学 电子皮肤 人工智能 纳米技术 复合材料 电子工程 工程类
作者
Lei Hao,Yixin Cao,Gang Sun,Peihao Huang,Xu Xue,Bohan Lu,Jiawei Yan,Yuxi Wang,Eng Gee Lim,Xin Tu,Yina Liu,Xuhui Sun,Chun Zhao,Zhen Wen
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c14285
摘要

Triboelectrification-based artificial mechanoreceptors (TBAMs) is able to convert mechanical stimuli directly into electrical signals, realizing self-adaptive protection and human–machine interactions of robots. However, traditional contact–electrification interfaces are prone to reaching their deformation limits under large pressures, resulting in a relatively narrow linear range. In this work, we fabricated mechano-graded microstructures to modulate the strain behavior of contact–electrification interfaces, simultaneously endowing the TBAMs with a high sensitivity and a wide linear detection range. The presence of step regions within the mechanically graded microstructures helps contact–electrification interfaces resist fast compressive deformation and provides a large effective area. The highly sensitive linear region of TBAM with 1.18 V/kPa can be effectively extended to four times of that for the devices with traditional interfaces. In addition, the device is able to maintain a high sensitivity of 0.44 V/kPa even under a large pressure from 40 to 600 kPa. TBAM has been successfully used as an electronic skin to realize self-adaptive protection and grip strength perception for a commercial robot arm. Finally, a high angle resolution of 2° and an excellent linearity of 99.78% for joint bending detection were also achieved. With the aid of a convolutional neural network algorithm, a data glove based on TBAMs realizes a high accuracy rate of 95.5% for gesture recognition in a dark environment.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
SciGPT应助yao chen采纳,获得10
刚刚
李爱国应助innate采纳,获得10
1秒前
1秒前
1秒前
2秒前
2秒前
LXD发布了新的文献求助10
2秒前
iNk应助两只老虎和兔子采纳,获得10
2秒前
fuyue完成签到,获得积分10
3秒前
3秒前
3秒前
3秒前
华仔应助高木同学采纳,获得10
3秒前
狂野萤应助耍酷的觅荷采纳,获得20
3秒前
czyzyzy发布了新的文献求助10
4秒前
lucas发布了新的文献求助10
4秒前
musejie应助陈琳采纳,获得10
4秒前
1112完成签到,获得积分10
4秒前
刘医生发布了新的文献求助30
4秒前
gx发布了新的文献求助10
4秒前
梦想在飞发布了新的文献求助20
5秒前
5秒前
Orma完成签到 ,获得积分10
6秒前
6秒前
安静人完成签到 ,获得积分10
7秒前
高lucky发布了新的文献求助10
7秒前
丘比特应助一直采纳,获得10
7秒前
追寻天亦发布了新的文献求助10
7秒前
8秒前
1112发布了新的文献求助10
8秒前
8秒前
sun完成签到 ,获得积分10
8秒前
wanci应助LXD采纳,获得10
9秒前
领导范儿应助CCCr采纳,获得10
9秒前
Akim应助zhangtong采纳,获得10
10秒前
10秒前
莫西莫西发布了新的文献求助10
11秒前
11秒前
12秒前
威武的妍完成签到,获得积分10
12秒前
高分求助中
Picture Books with Same-sex Parented Families: Unintentional Censorship 700
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Effective Learning and Mental Wellbeing 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3974797
求助须知:如何正确求助?哪些是违规求助? 3519250
关于积分的说明 11197623
捐赠科研通 3255405
什么是DOI,文献DOI怎么找? 1797769
邀请新用户注册赠送积分活动 877156
科研通“疑难数据库(出版商)”最低求助积分说明 806202