亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Microcrystal Growth Pathways Investigated with Machine Learning Segmentation and Classification in Scanning Electron Microscopy

成核 结晶 胶体晶体 材料科学 晶体生长 Crystal(编程语言) 扫描电子显微镜 聚结(物理) 纳米技术 胶体 结晶学 化学物理 化学 计算机科学 物理 物理化学 复合材料 有机化学 天体生物学 程序设计语言
作者
Rachel R. Chan,Jacob Pietryga,Kaitlin M. Landy,Kyle J. Gibson,Chad A. Mirkin
出处
期刊:ACS Nano [American Chemical Society]
标识
DOI:10.1021/acsnano.4c08955
摘要

Advances in electron microscopy have revolutionized material characterization on the nano- and microscales, providing important insights into local ordering, structure, and size and quality distributions. While shape and size can be rigorously quantified through microscopy, it is often limited to local structure analysis and fails to describe bulk sample quality. Herein, a flexible machine learning (ML) tool is described that can segment and classify faceted crystals in scanning electron microscopy (SEM) micrographs to determine sample quality through the crystal size and product distribution. As a case study, this tool was applied to investigate crystal growth pathways (classical nucleation and growth compared to nonclassical growth) in DNA-mediated nanoparticle assembly through size and product (single crystal, fused crystal, or noncrystal) distribution of samples containing over 13000 colloidal crystal products. Strong DNA bond strengths (controlled by DNA sequence) lead to fast nucleation that exhausts the monomer concentration, resulting in smaller colloidal crystals. Alternatively, increased thermal energy and crystallization time lead to nonclassical crystallization pathways (coalescence) that result in larger colloidal crystals. This tool is useful since experimental conditions can now be deliberately identified to control colloidal crystal size and size distribution, important considerations for researchers interested in designing and synthesizing colloidal crystal metamaterials.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
YE发布了新的文献求助10
3秒前
DD完成签到 ,获得积分10
3秒前
浦肯野应助内向耷采纳,获得60
15秒前
风止发布了新的文献求助10
15秒前
Drxie完成签到,获得积分10
16秒前
张同学快去做实验呀完成签到,获得积分10
25秒前
28秒前
bkagyin应助haokeyan采纳,获得10
48秒前
Hart完成签到 ,获得积分10
55秒前
善学以致用应助风止采纳,获得10
1分钟前
酷波er应助yupeijin采纳,获得10
1分钟前
1分钟前
1分钟前
风止发布了新的文献求助10
1分钟前
1分钟前
没有昵称发布了新的文献求助10
1分钟前
赘婿应助风止采纳,获得10
1分钟前
科研通AI5应助没有昵称采纳,获得10
1分钟前
1分钟前
852应助顺心的星月采纳,获得10
1分钟前
小pppp发布了新的文献求助10
1分钟前
刘大喜发布了新的文献求助10
1分钟前
小pppp完成签到,获得积分10
1分钟前
喵喵发布了新的文献求助230
1分钟前
1分钟前
1分钟前
86400完成签到,获得积分10
1分钟前
2分钟前
香蕉觅云应助zhangyimg采纳,获得10
2分钟前
天天快乐应助Sahar采纳,获得10
2分钟前
2分钟前
2分钟前
uu发布了新的文献求助10
2分钟前
haokeyan发布了新的文献求助10
2分钟前
2分钟前
2分钟前
haokeyan完成签到,获得积分10
2分钟前
Sahar发布了新的文献求助10
2分钟前
竹子完成签到,获得积分10
2分钟前
无花果应助科研通管家采纳,获得10
2分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 1000
Conference Record, IAS Annual Meeting 1977 610
電気学会論文誌D(産業応用部門誌), 141 巻, 11 号 510
Virulence Mechanisms of Plant-Pathogenic Bacteria 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3561907
求助须知:如何正确求助?哪些是违规求助? 3135509
关于积分的说明 9412416
捐赠科研通 2835888
什么是DOI,文献DOI怎么找? 1558793
邀请新用户注册赠送积分活动 728452
科研通“疑难数据库(出版商)”最低求助积分说明 716865