Machine Learning-Based High-Throughput Screening for High-Stability Polyimides

吞吐量 高通量筛选 计算机科学 理论(学习稳定性) 工艺工程 化学 机器学习 电信 工程类 生物化学 无线
作者
Gaoyang Luo,Feicheng Huan,Yuwei Sun,Feng Shi,Shengwei Deng,Jianguo Wang
出处
期刊:Industrial & Engineering Chemistry Research [American Chemical Society]
标识
DOI:10.1021/acs.iecr.4c03379
摘要

High-stability polyimides exhibit tremendous potential for applications in flexible electronics, fibers, and membrane materials. However, screening polyimide structures with superior performance remains a significant challenge. In this study, we combined literature data, machine learning, and molecular dynamics simulations to identify key factors influencing the stability of polyimide structures and screen for high-stability polyimide candidates. Specifically, we utilized interpretable machine learning methods to analyze polyimide systems documented in the literature, aiming to identify crucial substructures that impact polyimide stability. This approach offers valuable insights for the development of high-stability polymers. By integrating diamine and dianhydride structures from both the PubChem database and the literature, we generated a data set containing over 15 million hypothetical polyimides. Using appropriate machine learning models, we conducted high-throughput screening to discover polyimides that simultaneously exhibit high thermal stability and excellent mechanical properties. The selected machine learning models demonstrated strong predictive capability in forecasting four key properties: glass transition temperature (Tg), Young's modulus (Ym), tensile strength (Ts), and elongation at break (Eg). Based on the predictions from the optimal models and synthetic accessibility scores, we ultimately identified eight polyimide copolymer structures with outstanding stability, with some of their properties validated through all-atom molecular dynamics simulations.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
tdd应助kiki采纳,获得10
1秒前
在水一方应助小宝骡采纳,获得10
2秒前
3秒前
科研通AI2S应助lllll采纳,获得10
5秒前
咩咩咩咩咩咩完成签到,获得积分10
5秒前
Singularity应助季宇采纳,获得10
6秒前
叙温雨发布了新的文献求助10
6秒前
黄阿鹏发布了新的文献求助10
9秒前
11秒前
11秒前
12秒前
orixero应助天真的邴采纳,获得10
13秒前
ming完成签到,获得积分10
15秒前
唯有发布了新的文献求助10
16秒前
各位大牛帮帮忙完成签到 ,获得积分10
17秒前
17秒前
17秒前
高晨旭发布了新的文献求助10
18秒前
lalala发布了新的文献求助10
18秒前
共享精神应助科研通管家采纳,获得10
19秒前
乐乐应助科研通管家采纳,获得10
19秒前
酷波er应助科研通管家采纳,获得10
19秒前
充电宝应助科研通管家采纳,获得10
19秒前
科研通AI2S应助科研通管家采纳,获得10
19秒前
熊熊面包应助科研通管家采纳,获得10
19秒前
19秒前
务实的苠完成签到,获得积分10
23秒前
24秒前
25秒前
王启蛰发布了新的文献求助10
25秒前
隐形曼青应助叙温雨采纳,获得10
25秒前
薰硝壤应助唯有采纳,获得10
25秒前
25秒前
小小小珂卿完成签到,获得积分10
27秒前
Alkaid应助Charail采纳,获得10
28秒前
min17发布了新的文献求助10
28秒前
28秒前
ghost发布了新的文献求助10
28秒前
LHF发布了新的文献求助10
29秒前
高分求助中
Evolution 10000
Sustainability in Tides Chemistry 2800
The Young builders of New china : the visit of the delegation of the WFDY to the Chinese People's Republic 1000
юрские динозавры восточного забайкалья 800
Diagnostic immunohistochemistry : theranostic and genomic applications 6th Edition 500
Chen Hansheng: China’s Last Romantic Revolutionary 500
China's Relations With Japan 1945-83: The Role of Liao Chengzhi 400
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3149266
求助须知:如何正确求助?哪些是违规求助? 2800354
关于积分的说明 7839707
捐赠科研通 2457979
什么是DOI,文献DOI怎么找? 1308158
科研通“疑难数据库(出版商)”最低求助积分说明 628456
版权声明 601706