An Ultra Lightweight Interpretable Convolution-Vision Transformer Fusion Model for Plant Disease Identification: ConViTX

人工智能 计算机科学 鉴定(生物学) 变压器 计算机视觉 融合 卷积(计算机科学) 模式识别(心理学) 工程类 人工神经网络 电气工程 电压 植物 生物 语言学 哲学
作者
Poornima Singh Thakur,Shubhangi Chaturvedi,Ayan Seal,Pritee Khanna,Tanuja Sheorey,Aparajita Ojha
标识
DOI:10.1109/tcbbio.2024.3515149
摘要

Plant diseases have been detrimental for the agriculture industry, as they cause substantial crop loss globally. To overcome this, IoT and AI-based smart agriculture solutions are being deployed for plant disease detection. However, a diverse range of crops and their diseases pose enormous challenges to these methods. Additionally, limited generalizability and the black-box nature of existing deep learning models, together with the scarcity of in-field datasets, are the main bottlenecks in developing efficient and acceptable solutions for large-scale applications. In the present work, a lightweight model 'ConViTX' is proposed for plant disease classification that demonstrates improved generalizability and explainability. The compact architecture of ConViTX uses a fusion of convolutional neural networks and vision transformers to simultaneously capture local and global features. Remarkably, ConViTX outperforms nine state-of-the-art deep learning methods on four publicly available datasets and a self-collected in-field maize dataset. Furthermore, the model demonstrates explainable prediction through Gradient Weighted Class Activation Maps and Locally Interpretable Model-Agnostic Evaluations. ConViTX attains 98.8% accuracy on the maize dataset and 61.42% on drone camera-captured raw images. With only 0.7 million parameters and 0.647 billion operations per second, the proposed model has the potential for deployment on resource-constrained precision agriculture setups.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
852应助MIN采纳,获得10
1秒前
清秀紫南发布了新的文献求助10
1秒前
3秒前
无私文博发布了新的文献求助10
4秒前
stITW完成签到,获得积分10
4秒前
4秒前
Chouvikin完成签到,获得积分10
4秒前
七七关注了科研通微信公众号
4秒前
gauri发布了新的文献求助10
5秒前
NexusExplorer应助海绵宝宝采纳,获得10
5秒前
7秒前
7秒前
mm完成签到,获得积分10
8秒前
赘婿应助doctor采纳,获得10
8秒前
9秒前
CodeCraft应助开放的大侠采纳,获得10
10秒前
Hello应助huihui采纳,获得10
10秒前
孙远欣发布了新的文献求助10
10秒前
11秒前
lsx完成签到,获得积分10
11秒前
11秒前
orixero应助谦让的小甜瓜采纳,获得10
12秒前
12秒前
14秒前
奇遇发布了新的文献求助10
14秒前
小王好饿完成签到 ,获得积分10
15秒前
15秒前
小胖完成签到,获得积分10
16秒前
16秒前
17秒前
17秒前
CipherSage应助Kevin Li采纳,获得30
18秒前
zzzzzzzzzzzz完成签到,获得积分10
18秒前
19秒前
19秒前
小王好饿发布了新的文献求助10
20秒前
20秒前
刻苦慕晴完成签到 ,获得积分10
21秒前
21秒前
21秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3544116
求助须知:如何正确求助?哪些是违规求助? 3121321
关于积分的说明 9346532
捐赠科研通 2819334
什么是DOI,文献DOI怎么找? 1550167
邀请新用户注册赠送积分活动 722396
科研通“疑难数据库(出版商)”最低求助积分说明 713227