Simulating fish autonomous swimming behaviours using deep reinforcement learning based on Kolmogorov-Arnold Networks

强化学习 钢筋 人工智能 计算机科学 渔业 心理学 生物 社会心理学
作者
Tao Li,Chunze Zhang,Guibin Zhang,Qin Zhou,Ji Hou,Wei Diao,Wanwan Meng,Xujin Zhang
出处
期刊:Bioinspiration & Biomimetics [IOP Publishing]
标识
DOI:10.1088/1748-3190/ada59c
摘要

The study of fish swimming behaviours and locomotion mechanisms holds significant scientific and engineering value. With the rapid advancements in artificial intelligence, a new method combining deep reinforcement learning (DRL) with computational fluid dynamics (CFD) has emerged and been applied to simulate the autonomous behavior of higher organisms like fish. However, the scale of this cross-disciplinary method is directly affected by the efficiency of the DRL model. To promote it to more general application scenarios, there is a pressing need for further research on more efficient and economical network architectures to address the challenge of approximating state-value function in high-dimensional, dynamic, and uncertain environments. Building upon a previously proposed computational platform for the simulation of fish autonomous swimming behaviour, we integrated KANs and tested their performance in point-to-point swimming and Kármán gait swimming environments. Experimental results demonstrated that, compared to LSTMs and MLPs networks, the introduction of KANs significantly enhanced the perception and decision-making abilities of the intelligent fish in complex fluid environments. With a smaller network scale, in the point-to-point swimming case, KANs effectively approximated the state-value function, achieving average reward improvements of up to 88.0\% and 94.1\% over MLPs and LSTMs networks, respectively, and increased by 766.7\% and 105.6\% in the Kármán gait swimming case. Under comparable network sizes, the intelligent fish with KANs exhibited faster learning capabilities and more stable swimming performance in complex fluid settings.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
zhaopeipei完成签到,获得积分10
1秒前
1秒前
2秒前
jiangmingjiao发布了新的文献求助10
2秒前
yang发布了新的文献求助10
3秒前
abc123完成签到,获得积分20
3秒前
klpkyx完成签到,获得积分20
4秒前
顺利毕业发布了新的文献求助10
5秒前
所所应助野性的鹭洋采纳,获得10
5秒前
超帅青烟完成签到,获得积分10
7秒前
8秒前
新城吴发布了新的文献求助10
9秒前
彭于晏应助张文懿采纳,获得10
11秒前
14秒前
abc123发布了新的文献求助10
14秒前
Janey发布了新的文献求助10
14秒前
小二郎应助遇见馅儿饼采纳,获得10
15秒前
轻松的雪旋完成签到,获得积分10
15秒前
16秒前
整齐晓筠完成签到 ,获得积分10
17秒前
丘比特应助糖糖糖唐采纳,获得10
18秒前
zhh发布了新的文献求助10
18秒前
FashionBoy应助BK_采纳,获得10
18秒前
July发布了新的文献求助10
19秒前
新城吴完成签到,获得积分10
19秒前
852应助潘fujun采纳,获得10
20秒前
CC发布了新的文献求助10
20秒前
21秒前
21秒前
迷人尔蓝发布了新的文献求助30
22秒前
vio_107发布了新的文献求助10
22秒前
22秒前
23秒前
luo完成签到,获得积分10
24秒前
ni发布了新的文献求助10
24秒前
25秒前
26秒前
zhang183clue应助科研通管家采纳,获得30
27秒前
我是老大应助科研通管家采纳,获得10
27秒前
whatever应助科研通管家采纳,获得20
27秒前
高分求助中
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
A new approach to the extrapolation of accelerated life test data 1000
Problems of point-blast theory 400
北师大毕业论文 基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 390
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
Novel Preparation of Chitin Nanocrystals by H2SO4 and H3PO4 Hydrolysis Followed by High-Pressure Water Jet Treatments 300
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3998449
求助须知:如何正确求助?哪些是违规求助? 3537924
关于积分的说明 11272900
捐赠科研通 3276966
什么是DOI,文献DOI怎么找? 1807205
邀请新用户注册赠送积分活动 883819
科研通“疑难数据库(出版商)”最低求助积分说明 810020