Generative Adversarial Networks in the Field of Medical Image Segmentation

分割 计算机科学 人工智能 图像分割 领域(数学) 模式 水准点(测量) 医学影像学 深度学习 计算机视觉 机器学习 模式识别(心理学) 地理 地图学 社会科学 数学 社会学 纯数学
作者
Bisma Sultan,Aasia Rehman,Lubna Riyaz
标识
DOI:10.1002/9781394245369.ch8
摘要

This paper provides a comprehensive review of image segmentation techniques based on generative adversarial networks (GANs). For completeness, the traditional image segmentation techniques are also discussed briefly. In addition, the paper delves into the principles of GANs and highlights representative models. Various methods of image segmentation utilizing GAN models are thoroughly examined and categorized into three main groups: segmentation regions, imaging modalities, and classification methods. The essential GAN-based segmentation techniques are elucidated, shedding light on their core concepts. This three-tiered classification system not only facilitates a comprehensive understanding of the diverse approaches within GAN-based medical image segmentation but also serves as a valuable framework for researchers and practitioners in navigating the evolving landscape of this specialized field. To assess the effectiveness of these segmentation techniques, the paper relies on reported results from researchers using benchmark datasets such as Brain Tumor Segmentation (BraTS), Structured Analysis of the Retina (STARE), Digital Retinal Images for Vessel Extraction (DRIVE), Child Heart and Health Study in England (CHASE), Medical Image Computing and Computer-Assisted Intervention (MICCAI)-2017, PROMISE12, INBreast, Alzheimer's Disease Neuroimaging Initiative (ADNI), Lung Image Database Consortium (LIDC), PDDCA, and CHAOS2019. The analysis of these results indicates a discernible potential for the development of novel GAN-based architectures that can enhance the performance of medical image segmentation. The paper thus underscores the need for further exploration and innovation in this domain to address existing limitations and optimize the outcomes of image segmentation in medical contexts.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
wenze完成签到,获得积分10
1秒前
优秀送终完成签到,获得积分10
1秒前
2秒前
wanci应助linnnn采纳,获得10
2秒前
2秒前
jsy完成签到,获得积分10
2秒前
华仔应助谢明渝采纳,获得10
2秒前
2秒前
鲤角兽完成签到,获得积分10
2秒前
3秒前
奶盖完成签到,获得积分10
3秒前
iNk应助xuan采纳,获得20
3秒前
Hong完成签到 ,获得积分10
4秒前
维生素完成签到 ,获得积分10
4秒前
优秀送终发布了新的文献求助10
4秒前
4秒前
5秒前
5秒前
5秒前
一枚青椒完成签到,获得积分10
6秒前
飞云发布了新的文献求助10
6秒前
6秒前
英俊的铭应助youngbin采纳,获得10
6秒前
山复尔尔发布了新的文献求助10
7秒前
很菜的研究生完成签到,获得积分10
7秒前
LONG完成签到,获得积分10
8秒前
npp完成签到,获得积分10
8秒前
奶盖发布了新的文献求助10
9秒前
领导范儿应助宇文雨文采纳,获得10
9秒前
闻元杰发布了新的文献求助10
9秒前
9秒前
泽灵发布了新的文献求助10
9秒前
9秒前
影流发布了新的文献求助10
9秒前
zjouF完成签到,获得积分20
10秒前
木木完成签到 ,获得积分10
10秒前
czyzyzy发布了新的文献求助10
10秒前
Lei发布了新的文献求助10
10秒前
cure发布了新的文献求助10
11秒前
iNk应助yoou采纳,获得20
11秒前
高分求助中
The Mother of All Tableaux Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 2400
Ophthalmic Equipment Market by Devices(surgical: vitreorentinal,IOLs,OVDs,contact lens,RGP lens,backflush,diagnostic&monitoring:OCT,actorefractor,keratometer,tonometer,ophthalmoscpe,OVD), End User,Buying Criteria-Global Forecast to2029 2000
Optimal Transport: A Comprehensive Introduction to Modeling, Analysis, Simulation, Applications 800
Official Methods of Analysis of AOAC INTERNATIONAL 600
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 588
T/CIET 1202-2025 可吸收再生氧化纤维素止血材料 500
Interpretation of Mass Spectra, Fourth Edition 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3954999
求助须知:如何正确求助?哪些是违规求助? 3501277
关于积分的说明 11102247
捐赠科研通 3231584
什么是DOI,文献DOI怎么找? 1786477
邀请新用户注册赠送积分活动 870090
科研通“疑难数据库(出版商)”最低求助积分说明 801798