ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 626-639 被引量:2
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
LIUJIE完成签到,获得积分10
1秒前
WJY完成签到,获得积分10
1秒前
轩辕剑身完成签到,获得积分0
2秒前
1101592875完成签到,获得积分10
3秒前
木雨亦潇潇完成签到,获得积分10
3秒前
刘亮亮完成签到,获得积分10
4秒前
www完成签到 ,获得积分0
4秒前
QS完成签到,获得积分10
4秒前
Lucas应助WJY采纳,获得10
6秒前
6秒前
Panini完成签到 ,获得积分10
7秒前
zhang完成签到 ,获得积分10
8秒前
她的城完成签到,获得积分0
9秒前
韩祖完成签到 ,获得积分10
9秒前
科研通AI6应助垣味栗子酱采纳,获得10
10秒前
Ellalala完成签到 ,获得积分10
10秒前
量子星尘发布了新的文献求助10
12秒前
草木发布了新的文献求助10
14秒前
14秒前
Much完成签到 ,获得积分10
17秒前
凡华完成签到 ,获得积分10
19秒前
奋进中的科研小菜鸟完成签到,获得积分10
20秒前
23秒前
星空完成签到 ,获得积分10
23秒前
量子星尘发布了新的文献求助10
28秒前
巧克力完成签到 ,获得积分10
28秒前
HU完成签到,获得积分10
29秒前
垣味栗子酱完成签到,获得积分20
30秒前
胖胖玩啊玩完成签到 ,获得积分10
32秒前
Tammy完成签到,获得积分10
32秒前
阿伟完成签到,获得积分10
34秒前
无极微光应助白华苍松采纳,获得20
35秒前
酷酷的安柏完成签到 ,获得积分10
36秒前
37秒前
lovekobe完成签到 ,获得积分10
37秒前
鲁卓林完成签到,获得积分10
37秒前
甜美傲蕾完成签到,获得积分10
38秒前
38秒前
yunt完成签到 ,获得积分10
40秒前
小高完成签到 ,获得积分10
41秒前
高分求助中
Encyclopedia of Immunobiology Second Edition 5000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
List of 1,091 Public Pension Profiles by Region 1621
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] | NHBS Field Guides & Natural History 1500
The Victim–Offender Overlap During the Global Pandemic: A Comparative Study Across Western and Non-Western Countries 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 1000
Brittle fracture in welded ships 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5584850
求助须知:如何正确求助?哪些是违规求助? 4668735
关于积分的说明 14771737
捐赠科研通 4616005
什么是DOI,文献DOI怎么找? 2530253
邀请新用户注册赠送积分活动 1499111
关于科研通互助平台的介绍 1467590