清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 626-639 被引量:2
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ARESCI完成签到,获得积分10
刚刚
彭于晏应助夏茉弋采纳,获得10
12秒前
19秒前
20秒前
文章多多发布了新的文献求助10
22秒前
所所应助文章多多采纳,获得10
28秒前
LUCKY完成签到 ,获得积分10
1分钟前
情怀应助科研通管家采纳,获得150
1分钟前
1分钟前
超大份雪碧完成签到 ,获得积分10
2分钟前
2分钟前
夏茉弋完成签到,获得积分10
2分钟前
夏茉弋发布了新的文献求助10
2分钟前
ZYP发布了新的文献求助10
3分钟前
久晓完成签到 ,获得积分10
3分钟前
大医仁心完成签到 ,获得积分10
4分钟前
ZYP完成签到,获得积分0
4分钟前
ZYP发布了新的文献求助10
4分钟前
4分钟前
doublenine18发布了新的文献求助30
4分钟前
4分钟前
4分钟前
4分钟前
5分钟前
5分钟前
5分钟前
6分钟前
外向的妍完成签到,获得积分10
6分钟前
6分钟前
6分钟前
6分钟前
萝卜猪完成签到,获得积分10
6分钟前
7分钟前
swh发布了新的文献求助10
7分钟前
7分钟前
7分钟前
ZYP发布了新的文献求助10
7分钟前
隐形曼青应助结实的半双采纳,获得10
7分钟前
7分钟前
Johan完成签到 ,获得积分10
8分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Reproduction Third Edition 3000
Comprehensive Methanol Science Production, Applications, and Emerging Technologies 2000
化妆品原料学 1000
Psychology of Self-Regulation 600
1st Edition Sports Rehabilitation and Training Multidisciplinary Perspectives By Richard Moss, Adam Gledhill 600
Red Book: 2024–2027 Report of the Committee on Infectious Diseases 500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5639779
求助须知:如何正确求助?哪些是违规求助? 4750432
关于积分的说明 15007332
捐赠科研通 4797998
什么是DOI,文献DOI怎么找? 2564082
邀请新用户注册赠送积分活动 1522938
关于科研通互助平台的介绍 1482609