ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
大幅提高文件上传限制,最高150M (2024-4-1)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
2秒前
4秒前
5秒前
不见高山完成签到,获得积分10
5秒前
光亮白羊发布了新的文献求助10
6秒前
6秒前
10秒前
丰知然应助LYY采纳,获得10
10秒前
守护星星发布了新的文献求助10
11秒前
yellowonion完成签到 ,获得积分10
11秒前
11秒前
柠檬不萌完成签到,获得积分10
11秒前
雨霖铃发布了新的文献求助10
12秒前
14秒前
14秒前
akakns发布了新的文献求助10
15秒前
羊毛毛完成签到,获得积分10
16秒前
不爱吃西葫芦完成签到 ,获得积分10
17秒前
任苒完成签到,获得积分10
17秒前
守护星星完成签到,获得积分10
19秒前
张小美发布了新的文献求助10
19秒前
mylpp发布了新的文献求助10
20秒前
20秒前
消消消消气完成签到 ,获得积分10
22秒前
Billy发布了新的文献求助30
23秒前
格兰德法泽尔完成签到,获得积分10
25秒前
madcatalysis发布了新的文献求助10
25秒前
Hello应助liu采纳,获得10
27秒前
喜之郎关注了科研通微信公众号
28秒前
小欧医生完成签到,获得积分10
28秒前
Cuz完成签到,获得积分10
31秒前
31秒前
CipherSage应助张小美采纳,获得10
34秒前
吹泡泡的红豆完成签到 ,获得积分10
34秒前
柔弱云朵完成签到 ,获得积分10
35秒前
35秒前
23完成签到,获得积分10
35秒前
嗯哼应助empty采纳,获得10
39秒前
上官若男应助小天添采纳,获得10
39秒前
喜之郎发布了新的文献求助10
41秒前
高分求助中
Licensing Deals in Pharmaceuticals 2019-2024 3000
Effect of reactor temperature on FCC yield 2000
Very-high-order BVD Schemes Using β-variable THINC Method 1020
PraxisRatgeber: Mantiden: Faszinierende Lauerjäger 800
Near Infrared Spectra of Origin-defined and Real-world Textiles (NIR-SORT): A spectroscopic and materials characterization dataset for known provenance and post-consumer fabrics 610
Mission to Mao: Us Intelligence and the Chinese Communists in World War II 600
Promoting women's entrepreneurship in developing countries: the case of the world's largest women-owned community-based enterprise 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 基因 遗传学 催化作用 物理化学 免疫学 量子力学 细胞生物学
热门帖子
关注 科研通微信公众号,转发送积分 3304346
求助须知:如何正确求助?哪些是违规求助? 2938329
关于积分的说明 8488322
捐赠科研通 2612813
什么是DOI,文献DOI怎么找? 1426885
科研通“疑难数据库(出版商)”最低求助积分说明 662879
邀请新用户注册赠送积分活动 647374