ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
白菜发布了新的文献求助20
刚刚
Fine发布了新的文献求助10
2秒前
Yuelong完成签到,获得积分10
3秒前
5秒前
dong应助Yuelong采纳,获得10
8秒前
bingsu108完成签到,获得积分10
9秒前
小岚花发布了新的文献求助10
11秒前
CodeCraft应助凉茶采纳,获得10
11秒前
脑洞疼应助YZQ采纳,获得10
12秒前
琳琳完成签到,获得积分10
12秒前
华仔应助俏皮的白柏采纳,获得10
13秒前
羊洋洋完成签到,获得积分20
13秒前
最爱地瓜和虾滑完成签到 ,获得积分10
15秒前
yar给聪慧的草丛的求助进行了留言
15秒前
奋斗雁山发布了新的文献求助10
15秒前
16秒前
查到文献了吗完成签到,获得积分10
16秒前
FashionBoy应助Lee采纳,获得10
16秒前
Elvira完成签到,获得积分10
16秒前
18秒前
20秒前
易酰水烊酸应助Onism采纳,获得10
20秒前
青岚完成签到 ,获得积分10
20秒前
21秒前
tay发布了新的文献求助10
22秒前
23秒前
pluto应助一直小虾米采纳,获得10
23秒前
双楠应助不想采纳,获得10
25秒前
26秒前
Luobing完成签到,获得积分10
27秒前
研友_LXjjOZ完成签到,获得积分10
27秒前
上官若男应助蔚蓝的天空采纳,获得10
28秒前
slr完成签到,获得积分10
28秒前
逆境发布了新的文献求助10
28秒前
29秒前
草莓布丁发布了新的文献求助80
30秒前
凉茶发布了新的文献求助10
31秒前
31秒前
33秒前
33秒前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
ACSM’s Guidelines for Exercise Testing and Prescription, 12th edition 500
‘Unruly’ Children: Historical Fieldnotes and Learning Morality in a Taiwan Village (New Departures in Anthropology) 400
Indomethacinのヒトにおける経皮吸収 400
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 370
基于可调谐半导体激光吸收光谱技术泄漏气体检测系统的研究 350
Robot-supported joining of reinforcement textiles with one-sided sewing heads 320
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3988838
求助须知:如何正确求助?哪些是违规求助? 3531250
关于积分的说明 11252914
捐赠科研通 3269838
什么是DOI,文献DOI怎么找? 1804820
邀请新用户注册赠送积分活动 881943
科研通“疑难数据库(出版商)”最低求助积分说明 809028