ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
1秒前
小木子完成签到,获得积分10
3秒前
舟遥遥完成签到,获得积分10
4秒前
华仔应助大橙子采纳,获得10
6秒前
桐桐应助Bismarck采纳,获得10
10秒前
CLY完成签到,获得积分10
11秒前
12秒前
rita_sun1969完成签到,获得积分10
13秒前
研友_8K2QJZ完成签到,获得积分10
13秒前
蝴蝶完成签到 ,获得积分10
14秒前
ARIA完成签到 ,获得积分10
14秒前
大橙子发布了新的文献求助10
17秒前
Bismarck完成签到,获得积分20
18秒前
18秒前
爱笑子默完成签到,获得积分10
19秒前
19秒前
一点完成签到,获得积分10
21秒前
研友_VZG7GZ应助大葱鸭采纳,获得10
21秒前
DezhaoWang完成签到,获得积分10
22秒前
知犯何逆发布了新的文献求助10
23秒前
原本完成签到,获得积分10
23秒前
Bismarck发布了新的文献求助10
24秒前
苗条丹南完成签到 ,获得积分10
26秒前
yu完成签到 ,获得积分10
29秒前
skyleon完成签到,获得积分10
29秒前
无心的天真完成签到 ,获得积分10
30秒前
Engen完成签到,获得积分20
30秒前
31秒前
学术小垃圾完成签到,获得积分10
31秒前
dreamwalk完成签到 ,获得积分10
31秒前
黄淮科研小白龙完成签到 ,获得积分10
32秒前
齐嫒琳完成签到,获得积分10
34秒前
研友_Lav0Qn完成签到,获得积分10
34秒前
大橙子发布了新的文献求助10
35秒前
GreenT完成签到,获得积分10
35秒前
鳄鱼队长完成签到,获得积分10
36秒前
Zengyuan完成签到,获得积分10
36秒前
研友_Lav0Qn发布了新的文献求助10
37秒前
perry4rosa完成签到,获得积分0
37秒前
量子星尘发布了新的文献求助10
38秒前
高分求助中
【提示信息,请勿应助】关于scihub 10000
Les Mantodea de Guyane: Insecta, Polyneoptera [The Mantids of French Guiana] 3000
徐淮辽南地区新元古代叠层石及生物地层 3000
The Mother of All Tableaux: Order, Equivalence, and Geometry in the Large-scale Structure of Optimality Theory 3000
Handbook of Industrial Diamonds.Vol2 1100
Global Eyelash Assessment scale (GEA) 1000
Picture Books with Same-sex Parented Families: Unintentional Censorship 550
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 4038157
求助须知:如何正确求助?哪些是违规求助? 3575869
关于积分的说明 11373842
捐赠科研通 3305650
什么是DOI,文献DOI怎么找? 1819255
邀请新用户注册赠送积分活动 892655
科研通“疑难数据库(出版商)”最低求助积分说明 815022