ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 626-639 被引量:2
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Sunny完成签到 ,获得积分10
刚刚
文艺安青完成签到,获得积分10
1秒前
科研通AI6.1应助HE采纳,获得10
1秒前
微笑的绿蝶完成签到,获得积分10
2秒前
娜娜酱油发布了新的文献求助10
2秒前
pupucici发布了新的文献求助80
3秒前
Lsmile完成签到 ,获得积分10
3秒前
datiancaihaha发布了新的文献求助10
4秒前
wanghuhu发布了新的文献求助30
4秒前
Mr_Yilu完成签到,获得积分10
5秒前
ad完成签到,获得积分10
5秒前
左惋庭发布了新的文献求助10
6秒前
7秒前
bbanshan发布了新的文献求助10
7秒前
7秒前
打打应助sxmt123456789采纳,获得30
9秒前
小壳儿完成签到 ,获得积分10
9秒前
朝闻道完成签到 ,获得积分10
9秒前
夜泊完成签到,获得积分10
10秒前
10秒前
左惋庭完成签到,获得积分10
11秒前
达不溜完成签到,获得积分20
11秒前
无花果应助娜娜酱油采纳,获得10
11秒前
11秒前
善学以致用应助zyyicu采纳,获得20
12秒前
LZR完成签到,获得积分10
12秒前
13秒前
zjm发布了新的文献求助10
14秒前
dasheenly完成签到,获得积分10
15秒前
顾矜应助lala采纳,获得10
15秒前
15秒前
xixi完成签到,获得积分20
16秒前
16秒前
17秒前
17秒前
17秒前
17秒前
zz发布了新的文献求助10
18秒前
18秒前
18秒前
高分求助中
2025-2031全球及中国金刚石触媒粉行业研究及十五五规划分析报告 40000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Ägyptische Geschichte der 21.–30. Dynastie 2500
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5743755
求助须知:如何正确求助?哪些是违规求助? 5415833
关于积分的说明 15348312
捐赠科研通 4884362
什么是DOI,文献DOI怎么找? 2625769
邀请新用户注册赠送积分活动 1574598
关于科研通互助平台的介绍 1531510