ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 626-639 被引量:2
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
xuan发布了新的文献求助10
1秒前
嘿嘿嘿完成签到,获得积分10
1秒前
博ge发布了新的文献求助80
3秒前
量子星尘发布了新的文献求助10
4秒前
嘿嘿嘿发布了新的文献求助10
4秒前
6秒前
6秒前
不想学习发布了新的文献求助10
6秒前
乐乐应助箱子采纳,获得10
6秒前
6秒前
7秒前
7秒前
9秒前
9秒前
顾翩翩发布了新的文献求助10
10秒前
10秒前
Alan发布了新的文献求助10
10秒前
11秒前
adrenline发布了新的文献求助10
11秒前
CKX发布了新的文献求助10
12秒前
12秒前
浮生若梦完成签到,获得积分10
12秒前
成懂事长发布了新的文献求助10
12秒前
13秒前
木子完成签到 ,获得积分10
13秒前
科研通AI2S应助不想学习采纳,获得10
14秒前
沉默南露发布了新的文献求助10
15秒前
Hello应助123采纳,获得10
16秒前
Alan完成签到,获得积分10
16秒前
可爱丸子发布了新的文献求助10
16秒前
17秒前
量子星尘发布了新的文献求助10
18秒前
18秒前
浮生若梦发布了新的文献求助10
18秒前
顾矜应助沉默南露采纳,获得10
19秒前
yxy完成签到,获得积分20
19秒前
andrele发布了新的文献求助30
19秒前
ChiangYu完成签到,获得积分10
20秒前
xuan完成签到,获得积分10
20秒前
皮卡丘完成签到 ,获得积分0
21秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Introduction to strong mixing conditions volume 1-3 5000
Agyptische Geschichte der 21.30. Dynastie 3000
Aerospace Engineering Education During the First Century of Flight 2000
„Semitische Wissenschaften“? 1510
从k到英国情人 1500
sQUIZ your knowledge: Multiple progressive erythematous plaques and nodules in an elderly man 1000
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5771462
求助须知:如何正确求助?哪些是违规求助? 5591687
关于积分的说明 15427521
捐赠科研通 4904775
什么是DOI,文献DOI怎么找? 2638990
邀请新用户注册赠送积分活动 1586782
关于科研通互助平台的介绍 1541792