ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 626-639 被引量:2
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
傲娇诗完成签到,获得积分10
刚刚
心灵美盼烟完成签到,获得积分10
刚刚
晚来风与雪完成签到 ,获得积分10
1秒前
科研通AI6应助cuizhiyu采纳,获得30
1秒前
xxx发布了新的文献求助10
1秒前
xzh发布了新的文献求助10
1秒前
Li应助倒霉蛋采纳,获得30
2秒前
江子完成签到 ,获得积分10
2秒前
2秒前
2秒前
繁星背后发布了新的文献求助10
2秒前
Ava应助浪费采纳,获得10
3秒前
3秒前
努力发芽的小黄豆完成签到 ,获得积分10
3秒前
罗兴鲜发布了新的文献求助10
3秒前
ZMY完成签到 ,获得积分20
4秒前
4秒前
YYY发布了新的文献求助10
4秒前
薛而不思则罔完成签到 ,获得积分10
4秒前
李健应助平常沅采纳,获得10
4秒前
5秒前
浮浮世世发布了新的文献求助10
5秒前
肉被卡完成签到,获得积分10
6秒前
6秒前
Paranoid发布了新的文献求助10
6秒前
Jasper应助平淡糖豆采纳,获得10
6秒前
凉瞳发布了新的文献求助10
7秒前
xxx完成签到,获得积分10
7秒前
厉害完成签到,获得积分10
7秒前
沉静秋尽发布了新的文献求助10
7秒前
8秒前
洪汉完成签到,获得积分10
8秒前
123123完成签到,获得积分10
8秒前
兴奋若冰完成签到,获得积分10
8秒前
asdffgg814发布了新的文献求助10
8秒前
月亮完成签到 ,获得积分10
8秒前
在水一方应助Nano采纳,获得10
8秒前
wdd发布了新的文献求助10
9秒前
肖林发布了新的文献求助10
9秒前
WSS完成签到,获得积分10
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Fermented Coffee Market 2000
PARLOC2001: The update of loss containment data for offshore pipelines 500
Critical Thinking: Tools for Taking Charge of Your Learning and Your Life 4th Edition 500
Phylogenetic study of the order Polydesmida (Myriapoda: Diplopoda) 500
A Manual for the Identification of Plant Seeds and Fruits : Second revised edition 500
Vertebrate Palaeontology, 5th Edition 340
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5260162
求助须知:如何正确求助?哪些是违规求助? 4421632
关于积分的说明 13763676
捐赠科研通 4295814
什么是DOI,文献DOI怎么找? 2357032
邀请新用户注册赠送积分活动 1353405
关于科研通互助平台的介绍 1314609