ComNet: A Multiview Deep Learning Model for Predicting Drug Combination Side Effects

人工智能 副作用(计算机科学) 计算机科学 深度学习 药品 机器学习 医学 药理学 程序设计语言
作者
Zuolong Zhang,Zhiyuan Liu,Xu Shang,Shengbo Chen,Fang Zuo,Yi Wu,Dazhi Long
出处
期刊:Journal of Chemical Information and Modeling [American Chemical Society]
卷期号:65 (2): 626-639 被引量:2
标识
DOI:10.1021/acs.jcim.4c01737
摘要

As combination therapy becomes more common in clinical applications, predicting adverse effects of combination medications is a challenging task. However, there are three limitations of the existing prediction models. First, they rely on a single view of the drug and cannot fully utilize multiview information, resulting in limited performance when capturing complex structures. Second, they ignore subgraph information at different scales, which limits the ability to model interactions between subgraphs. Third, there has been limited research on effectively integrating multiview features of molecules. Therefore, we propose ComNet, a deep learning model that improves the accuracy of side effect prediction by integrating multiview features of drugs. First, to capture diverse features of drugs, a multiview feature extraction module is proposed, which not only uses molecular fingerprints but also extracts semantic information on SMILES and spatial information on 3D conformations. Second, to enhance the modeling ability of complex structures, a multiscale subgraph fusion mechanism is proposed, which can fuse local and global graph structures of drugs. Finally, a multiview feature fusion mechanism is proposed, which uses an attention mechanism to adaptively adjust the weights of different views to achieve multiview data fusion. Experiments on several publicly available data sets show that ComNet performs better than existing methods in various complex scenarios, especially in cold-start scenarios. Ablation experiments show that each core structure in ComNet contributes to the overall performance. Further analysis shows that ComNet not only converges rapidly and has good generalization ability but also identifies different substructures in the molecule. Finally, a case study on a self-collected data set validates the superior performance of ComNet in practical applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
扶苏完成签到 ,获得积分10
刚刚
1秒前
qingfengnai完成签到,获得积分10
1秒前
124发布了新的文献求助10
1秒前
科研通AI6应助苹果绿采纳,获得10
1秒前
2秒前
吴天姿完成签到,获得积分10
2秒前
研友_8WMxKn发布了新的文献求助10
2秒前
李健的小迷弟应助Joyan采纳,获得10
3秒前
4秒前
4秒前
yue完成签到,获得积分10
4秒前
4秒前
帅气的藏鸟完成签到,获得积分10
4秒前
orixero应助杨潇丶丶采纳,获得10
5秒前
5秒前
5秒前
支筮发布了新的文献求助10
5秒前
linciko发布了新的文献求助10
5秒前
xj发布了新的文献求助10
5秒前
Owen应助绵绵采纳,获得10
6秒前
华仔应助澈哩子采纳,获得10
6秒前
6秒前
量子星尘发布了新的文献求助10
7秒前
7秒前
7秒前
8秒前
8秒前
ygd发布了新的文献求助10
8秒前
仁爱曼冬发布了新的文献求助10
8秒前
SciGPT应助流萤采纳,获得10
9秒前
Yidie完成签到,获得积分10
9秒前
科研通AI6应助LuxuryQ采纳,获得10
9秒前
进击的PhD应助linciko采纳,获得20
9秒前
9秒前
10秒前
123完成签到,获得积分20
10秒前
科研三井泽完成签到,获得积分10
10秒前
10秒前
喜悦寄风发布了新的文献求助10
10秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Translanguaging in Action in English-Medium Classrooms: A Resource Book for Teachers 700
Exploring Nostalgia 500
Natural Product Extraction: Principles and Applications 500
Exosomes Pipeline Insight, 2025 500
Qualitative Data Analysis with NVivo By Jenine Beekhuyzen, Pat Bazeley · 2024 500
Advanced Memory Technology: Functional Materials and Devices 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5667995
求助须知:如何正确求助?哪些是违规求助? 4888874
关于积分的说明 15122780
捐赠科研通 4826840
什么是DOI,文献DOI怎么找? 2584376
邀请新用户注册赠送积分活动 1538211
关于科研通互助平台的介绍 1496526