亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting distant metastasis of bladder cancer using multiple machine learning models: a study based on the SEER database with external validation

Lasso(编程语言) 接收机工作特性 膀胱癌 队列 线性判别分析 逻辑回归 医学 癌症 支持向量机 计算机科学 转移 监测、流行病学和最终结果 肿瘤科 人工智能 机器学习 内科学 癌症登记处 万维网
作者
Xin Chang Zou,Xu-Guang Rao,Jian Huang,Jie Zhou,Hai Chao Chao,Tao Zeng
出处
期刊:Frontiers in Oncology [Frontiers Media]
卷期号:14
标识
DOI:10.3389/fonc.2024.1477166
摘要

Background and purpose Distant metastasis in bladder cancer is linked to poor prognosis and significant mortality. Machine learning (ML), a key area of artificial intelligence, has shown promise in the diagnosis, staging, and treatment of bladder cancer. This study aimed to employ various ML techniques to predict distant metastasis in patients with bladder cancer. Patients and methods Patients diagnosed with bladder cancer in the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2021 were included in this study. After a rigorous screening process, a total of 4,108 patients were selected for further analysis, divided in a 7:3 ratio into a training cohort and an internal validation cohort. In addition, 118 patients treated at the Second Affiliated Hospital of Nanchang University were included as an external validation cohort. Features were filtered using the least absolute shrinkage and selection operator (LASSO) regression algorithm. Based on the significant features identified, three ML algorithms were utilized to develop prediction models: logistic regression, support vector machine (SVM), and linear discriminant analysis (LDA). The predictive performance of the three models was evaluated by obtaining the area under the receiver operating characteristic (ROC) curve (AUC), the precision, the accuracy, and the F1 score. Results According to the statistical results, the final probability of distant metastasis in the population was 12.0% ( n = 495). LASSO regression analysis revealed that age, chemotherapy, tumor size, the examination of non-regional lymph nodes, and regional lymph node evaluation were significantly associated with distant metastasis of bladder cancer. In the internal validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.874, 0.877, and 0.845, respectively. The precision rates were 0.805, 0.769, and 0.827, respectively, and the F1 scores were 0.821, 0.819, and 0.835, respectively. The ROC curve demonstrated that the AUC for all models was greater than 0.7. In the external validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.856, 0.848, and 0.797, respectively, with the ROC curve indicating that the AUC also exceeded 0.7. The precision rates were 0.877, 0.718, and 0.736, respectively, and the F1 scores were 0.797, 0.778, and 0.762, respectively. Among the algorithms used, logistic regression demonstrated better predictive efficiency than the other two methods. The top three variables with the highest importance scores in the logistic regression were non-regional lymph nodes, age, and chemotherapy. Conclusion The prediction model developed using three ML algorithms demonstrated strong accuracy and discriminative capability in predicting distant metastasis in patients with bladder cancer. This might help clinicians in understanding patient prognosis and in formulating personalized treatment strategies, ultimately improving the overall prognosis of patients with bladder cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
qls123完成签到,获得积分10
5秒前
6秒前
10秒前
15秒前
岸在海的深处完成签到 ,获得积分10
15秒前
19秒前
20秒前
qls123发布了新的文献求助10
23秒前
29秒前
千山暮雪发布了新的文献求助10
34秒前
xx完成签到 ,获得积分10
35秒前
捉迷藏完成签到,获得积分0
48秒前
guoze完成签到,获得积分10
54秒前
NexusExplorer应助千山暮雪采纳,获得30
56秒前
wsw驳回了orixero应助
1分钟前
1分钟前
Djnsbj发布了新的文献求助10
1分钟前
dopamine完成签到,获得积分10
1分钟前
半城微凉应助科研通管家采纳,获得10
1分钟前
半城微凉应助科研通管家采纳,获得10
1分钟前
汉堡包应助科研通管家采纳,获得10
1分钟前
科研通AI2S应助科研通管家采纳,获得10
1分钟前
孜然味的拜拜肉完成签到,获得积分10
1分钟前
1分钟前
wsw发布了新的文献求助10
1分钟前
yi完成签到 ,获得积分10
2分钟前
2分钟前
张小美发布了新的文献求助10
2分钟前
张小美完成签到,获得积分10
2分钟前
xixi关注了科研通微信公众号
2分钟前
清爽的机器猫完成签到 ,获得积分10
2分钟前
2分钟前
漂南仰完成签到,获得积分10
2分钟前
李爱国应助嗯哼哈哈采纳,获得10
2分钟前
3分钟前
嗯哼哈哈发布了新的文献求助10
3分钟前
3分钟前
天天快乐应助迷路雁采纳,获得10
3分钟前
科研通AI2S应助科研通管家采纳,获得10
3分钟前
Dritsw应助零度采纳,获得20
3分钟前
高分求助中
A new approach to the extrapolation of accelerated life test data 1000
Cognitive Neuroscience: The Biology of the Mind 1000
Technical Brochure TB 814: LPIT applications in HV gas insulated switchgear 1000
Immigrant Incorporation in East Asian Democracies 500
Nucleophilic substitution in azasydnone-modified dinitroanisoles 500
不知道标题是什么 500
A Preliminary Study on Correlation Between Independent Components of Facial Thermal Images and Subjective Assessment of Chronic Stress 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 内科学 纳米技术 计算机科学 化学工程 复合材料 遗传学 基因 物理化学 催化作用 冶金 细胞生物学 免疫学
热门帖子
关注 科研通微信公众号,转发送积分 3965684
求助须知:如何正确求助?哪些是违规求助? 3510932
关于积分的说明 11155601
捐赠科研通 3245353
什么是DOI,文献DOI怎么找? 1792856
邀请新用户注册赠送积分活动 874181
科研通“疑难数据库(出版商)”最低求助积分说明 804214