亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Predicting distant metastasis of bladder cancer using multiple machine learning models: a study based on the SEER database with external validation

Lasso(编程语言) 接收机工作特性 膀胱癌 队列 线性判别分析 逻辑回归 医学 癌症 支持向量机 计算机科学 转移 监测、流行病学和最终结果 肿瘤科 人工智能 机器学习 内科学 癌症登记处 万维网
作者
Xin Chang Zou,Xu-Guang Rao,Jian Huang,Jie Zhou,Hai Chao Chao,Tao Zeng
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1477166
摘要

Background and purpose Distant metastasis in bladder cancer is linked to poor prognosis and significant mortality. Machine learning (ML), a key area of artificial intelligence, has shown promise in the diagnosis, staging, and treatment of bladder cancer. This study aimed to employ various ML techniques to predict distant metastasis in patients with bladder cancer. Patients and methods Patients diagnosed with bladder cancer in the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2021 were included in this study. After a rigorous screening process, a total of 4,108 patients were selected for further analysis, divided in a 7:3 ratio into a training cohort and an internal validation cohort. In addition, 118 patients treated at the Second Affiliated Hospital of Nanchang University were included as an external validation cohort. Features were filtered using the least absolute shrinkage and selection operator (LASSO) regression algorithm. Based on the significant features identified, three ML algorithms were utilized to develop prediction models: logistic regression, support vector machine (SVM), and linear discriminant analysis (LDA). The predictive performance of the three models was evaluated by obtaining the area under the receiver operating characteristic (ROC) curve (AUC), the precision, the accuracy, and the F1 score. Results According to the statistical results, the final probability of distant metastasis in the population was 12.0% ( n = 495). LASSO regression analysis revealed that age, chemotherapy, tumor size, the examination of non-regional lymph nodes, and regional lymph node evaluation were significantly associated with distant metastasis of bladder cancer. In the internal validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.874, 0.877, and 0.845, respectively. The precision rates were 0.805, 0.769, and 0.827, respectively, and the F1 scores were 0.821, 0.819, and 0.835, respectively. The ROC curve demonstrated that the AUC for all models was greater than 0.7. In the external validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.856, 0.848, and 0.797, respectively, with the ROC curve indicating that the AUC also exceeded 0.7. The precision rates were 0.877, 0.718, and 0.736, respectively, and the F1 scores were 0.797, 0.778, and 0.762, respectively. Among the algorithms used, logistic regression demonstrated better predictive efficiency than the other two methods. The top three variables with the highest importance scores in the logistic regression were non-regional lymph nodes, age, and chemotherapy. Conclusion The prediction model developed using three ML algorithms demonstrated strong accuracy and discriminative capability in predicting distant metastasis in patients with bladder cancer. This might help clinicians in understanding patient prognosis and in formulating personalized treatment strategies, ultimately improving the overall prognosis of patients with bladder cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
13秒前
kale123发布了新的文献求助10
19秒前
Li发布了新的文献求助10
19秒前
gexzygg应助科研通管家采纳,获得10
1分钟前
可爱的函函应助Li采纳,获得10
1分钟前
2分钟前
catherine发布了新的文献求助10
2分钟前
2分钟前
2分钟前
2分钟前
阳光的丹雪完成签到,获得积分10
2分钟前
2分钟前
Li发布了新的文献求助10
2分钟前
yt完成签到 ,获得积分10
2分钟前
2分钟前
tyr001发布了新的文献求助30
2分钟前
Yanyu完成签到,获得积分10
3分钟前
gexzygg应助科研通管家采纳,获得10
3分钟前
Ava应助tyr001采纳,获得10
3分钟前
Yanyu发布了新的文献求助100
3分钟前
量子星尘发布了新的文献求助10
3分钟前
3分钟前
赘婿应助Bosen采纳,获得10
3分钟前
3分钟前
Bosen发布了新的文献求助10
4分钟前
山水主人完成签到 ,获得积分10
4分钟前
tengfei完成签到,获得积分10
4分钟前
奥丁蒂法完成签到,获得积分10
5分钟前
shhoing应助科研通管家采纳,获得10
5分钟前
gexzygg应助科研通管家采纳,获得10
5分钟前
knight7m完成签到 ,获得积分10
5分钟前
5分钟前
冰魄之弓发布了新的文献求助10
5分钟前
冰魄之弓完成签到,获得积分20
5分钟前
Owen应助Bosen采纳,获得10
6分钟前
科研通AI6应助要减肥天问采纳,获得10
6分钟前
6分钟前
6分钟前
科研通AI6应助Li采纳,获得10
6分钟前
6分钟前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1581
Encyclopedia of Agriculture and Food Systems Third Edition 1500
以液相層析串聯質譜法分析糖漿產品中活性雙羰基化合物 / 吳瑋元[撰] = Analysis of reactive dicarbonyl species in syrup products by LC-MS/MS / Wei-Yuan Wu 1000
Lloyd's Register of Shipping's Approach to the Control of Incidents of Brittle Fracture in Ship Structures 800
Biology of the Reptilia. Volume 21. Morphology I. The Skull and Appendicular Locomotor Apparatus of Lepidosauria 600
The Composition and Relative Chronology of Dynasties 16 and 17 in Egypt 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5549332
求助须知:如何正确求助?哪些是违规求助? 4634617
关于积分的说明 14634915
捐赠科研通 4576098
什么是DOI,文献DOI怎么找? 2509504
邀请新用户注册赠送积分活动 1485354
关于科研通互助平台的介绍 1456572