重要提醒:2025.12.15 12:00-12:50期间发布的求助,下载出现了问题,现在已经修复完毕,请重新下载即可。如非文件错误,请不要进行驳回。

Predicting distant metastasis of bladder cancer using multiple machine learning models: a study based on the SEER database with external validation

Lasso(编程语言) 接收机工作特性 膀胱癌 队列 线性判别分析 逻辑回归 医学 癌症 支持向量机 计算机科学 转移 监测、流行病学和最终结果 肿瘤科 人工智能 机器学习 内科学 癌症登记处 万维网
作者
Xin Chang Zou,Xu-Guang Rao,Jian Huang,Jie Zhou,Hai Chao Chao,Tao Zeng
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1477166
摘要

Background and purpose Distant metastasis in bladder cancer is linked to poor prognosis and significant mortality. Machine learning (ML), a key area of artificial intelligence, has shown promise in the diagnosis, staging, and treatment of bladder cancer. This study aimed to employ various ML techniques to predict distant metastasis in patients with bladder cancer. Patients and methods Patients diagnosed with bladder cancer in the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2021 were included in this study. After a rigorous screening process, a total of 4,108 patients were selected for further analysis, divided in a 7:3 ratio into a training cohort and an internal validation cohort. In addition, 118 patients treated at the Second Affiliated Hospital of Nanchang University were included as an external validation cohort. Features were filtered using the least absolute shrinkage and selection operator (LASSO) regression algorithm. Based on the significant features identified, three ML algorithms were utilized to develop prediction models: logistic regression, support vector machine (SVM), and linear discriminant analysis (LDA). The predictive performance of the three models was evaluated by obtaining the area under the receiver operating characteristic (ROC) curve (AUC), the precision, the accuracy, and the F1 score. Results According to the statistical results, the final probability of distant metastasis in the population was 12.0% ( n = 495). LASSO regression analysis revealed that age, chemotherapy, tumor size, the examination of non-regional lymph nodes, and regional lymph node evaluation were significantly associated with distant metastasis of bladder cancer. In the internal validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.874, 0.877, and 0.845, respectively. The precision rates were 0.805, 0.769, and 0.827, respectively, and the F1 scores were 0.821, 0.819, and 0.835, respectively. The ROC curve demonstrated that the AUC for all models was greater than 0.7. In the external validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.856, 0.848, and 0.797, respectively, with the ROC curve indicating that the AUC also exceeded 0.7. The precision rates were 0.877, 0.718, and 0.736, respectively, and the F1 scores were 0.797, 0.778, and 0.762, respectively. Among the algorithms used, logistic regression demonstrated better predictive efficiency than the other two methods. The top three variables with the highest importance scores in the logistic regression were non-regional lymph nodes, age, and chemotherapy. Conclusion The prediction model developed using three ML algorithms demonstrated strong accuracy and discriminative capability in predicting distant metastasis in patients with bladder cancer. This might help clinicians in understanding patient prognosis and in formulating personalized treatment strategies, ultimately improving the overall prognosis of patients with bladder cancer.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
jingjing发布了新的文献求助10
1秒前
1秒前
1秒前
默默犀牛完成签到 ,获得积分10
1秒前
Hello应助燕子采纳,获得10
2秒前
刘佳佳完成签到 ,获得积分10
3秒前
王振123654完成签到,获得积分10
3秒前
3秒前
wxy发布了新的文献求助10
3秒前
zhaoh完成签到,获得积分20
3秒前
科研通AI6应助炙热晓露采纳,获得10
4秒前
Rita发布了新的文献求助10
4秒前
YaoHui发布了新的文献求助10
4秒前
充电宝应助牧楊人采纳,获得10
4秒前
111发布了新的文献求助30
5秒前
今后应助无名采纳,获得10
5秒前
无情曼易发布了新的文献求助10
6秒前
6秒前
nnnnnnn发布了新的文献求助10
7秒前
英俊的铭应助lllllllulu采纳,获得10
8秒前
8秒前
8秒前
9秒前
10秒前
11秒前
共享精神应助cis2014采纳,获得10
12秒前
Rita完成签到,获得积分10
12秒前
glacial发布了新的文献求助10
13秒前
yys10l完成签到,获得积分10
14秒前
yys完成签到,获得积分10
14秒前
15秒前
15秒前
tantan完成签到,获得积分10
15秒前
明明发布了新的文献求助10
16秒前
超帅孱完成签到,获得积分10
16秒前
17秒前
慕青应助Yy1331采纳,获得10
17秒前
18秒前
Hello应助木木三采纳,获得10
18秒前
lll发布了新的文献求助10
19秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
List of 1,091 Public Pension Profiles by Region 1001
Latent Class and Latent Transition Analysis: With Applications in the Social, Behavioral, and Health Sciences 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
Haematolymphoid Tumours (Part A and Part B, WHO Classification of Tumours, 5th Edition, Volume 11) 400
Virus-like particles empower RNAi for effective control of a Coleopteran pest 400
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5467656
求助须知:如何正确求助?哪些是违规求助? 4571307
关于积分的说明 14329661
捐赠科研通 4497890
什么是DOI,文献DOI怎么找? 2464141
邀请新用户注册赠送积分活动 1452961
关于科研通互助平台的介绍 1427673