Predicting distant metastasis of bladder cancer using multiple machine learning models: a study based on the SEER database with external validation

Lasso(编程语言) 接收机工作特性 膀胱癌 队列 线性判别分析 逻辑回归 医学 癌症 支持向量机 计算机科学 转移 监测、流行病学和最终结果 肿瘤科 人工智能 机器学习 内科学 癌症登记处 万维网
作者
Xin Chang Zou,Xu-Guang Rao,Jian Huang,Jie Zhou,Hai Chao Chao,Tao Zeng
出处
期刊:Frontiers in Oncology [Frontiers Media SA]
卷期号:14
标识
DOI:10.3389/fonc.2024.1477166
摘要

Background and purpose Distant metastasis in bladder cancer is linked to poor prognosis and significant mortality. Machine learning (ML), a key area of artificial intelligence, has shown promise in the diagnosis, staging, and treatment of bladder cancer. This study aimed to employ various ML techniques to predict distant metastasis in patients with bladder cancer. Patients and methods Patients diagnosed with bladder cancer in the Surveillance, Epidemiology, and End Results (SEER) database from 2000 to 2021 were included in this study. After a rigorous screening process, a total of 4,108 patients were selected for further analysis, divided in a 7:3 ratio into a training cohort and an internal validation cohort. In addition, 118 patients treated at the Second Affiliated Hospital of Nanchang University were included as an external validation cohort. Features were filtered using the least absolute shrinkage and selection operator (LASSO) regression algorithm. Based on the significant features identified, three ML algorithms were utilized to develop prediction models: logistic regression, support vector machine (SVM), and linear discriminant analysis (LDA). The predictive performance of the three models was evaluated by obtaining the area under the receiver operating characteristic (ROC) curve (AUC), the precision, the accuracy, and the F1 score. Results According to the statistical results, the final probability of distant metastasis in the population was 12.0% ( n = 495). LASSO regression analysis revealed that age, chemotherapy, tumor size, the examination of non-regional lymph nodes, and regional lymph node evaluation were significantly associated with distant metastasis of bladder cancer. In the internal validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.874, 0.877, and 0.845, respectively. The precision rates were 0.805, 0.769, and 0.827, respectively, and the F1 scores were 0.821, 0.819, and 0.835, respectively. The ROC curve demonstrated that the AUC for all models was greater than 0.7. In the external validation cohort, the prediction accuracy rates for logistic regression, SVM, and LDA were 0.856, 0.848, and 0.797, respectively, with the ROC curve indicating that the AUC also exceeded 0.7. The precision rates were 0.877, 0.718, and 0.736, respectively, and the F1 scores were 0.797, 0.778, and 0.762, respectively. Among the algorithms used, logistic regression demonstrated better predictive efficiency than the other two methods. The top three variables with the highest importance scores in the logistic regression were non-regional lymph nodes, age, and chemotherapy. Conclusion The prediction model developed using three ML algorithms demonstrated strong accuracy and discriminative capability in predicting distant metastasis in patients with bladder cancer. This might help clinicians in understanding patient prognosis and in formulating personalized treatment strategies, ultimately improving the overall prognosis of patients with bladder cancer.

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
ZJU完成签到,获得积分10
1秒前
黄诗淇完成签到 ,获得积分10
1秒前
Dorren完成签到,获得积分10
3秒前
十米完成签到 ,获得积分10
3秒前
4秒前
沉沉完成签到 ,获得积分0
4秒前
星期五应助科研通管家采纳,获得10
9秒前
Xiaoxiao应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
Orange应助科研通管家采纳,获得10
9秒前
Wind应助wwl采纳,获得10
11秒前
科研通AI2S应助单薄映易采纳,获得10
11秒前
13秒前
甜屁儿完成签到 ,获得积分10
13秒前
ECHO完成签到,获得积分10
14秒前
anz完成签到 ,获得积分10
14秒前
LIJIngcan完成签到 ,获得积分10
16秒前
黎黎原上草完成签到,获得积分10
18秒前
水云发布了新的文献求助10
19秒前
迷路绮南完成签到 ,获得积分10
20秒前
dingtao发布了新的文献求助80
21秒前
又又完成签到 ,获得积分10
22秒前
yinyin完成签到 ,获得积分10
24秒前
王旭东完成签到 ,获得积分10
25秒前
南风完成签到 ,获得积分10
25秒前
splemeth完成签到,获得积分10
26秒前
无私的电灯胆完成签到,获得积分10
29秒前
朱朱完成签到 ,获得积分10
29秒前
ll完成签到 ,获得积分10
29秒前
坚强的铅笔完成签到 ,获得积分10
30秒前
資鼒完成签到 ,获得积分10
31秒前
。。完成签到 ,获得积分10
33秒前
sunnyqqz完成签到,获得积分10
34秒前
量子星尘发布了新的文献求助10
34秒前
宜菏发布了新的文献求助10
34秒前
34秒前
吉以寒完成签到,获得积分10
41秒前
Gu0F1完成签到 ,获得积分10
42秒前
花卷完成签到,获得积分10
42秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Encyclopedia of Agriculture and Food Systems Third Edition 2000
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 临床微生物学程序手册,多卷,第5版 2000
人脑智能与人工智能 1000
King Tyrant 720
Silicon in Organic, Organometallic, and Polymer Chemistry 500
Principles of Plasma Discharges and Materials Processing, 3rd Edition 400
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 计算机科学 有机化学 物理 生物化学 纳米技术 复合材料 内科学 化学工程 人工智能 催化作用 遗传学 数学 基因 量子力学 物理化学
热门帖子
关注 科研通微信公众号,转发送积分 5599922
求助须知:如何正确求助?哪些是违规求助? 4685747
关于积分的说明 14838974
捐赠科研通 4674097
什么是DOI,文献DOI怎么找? 2538431
邀请新用户注册赠送积分活动 1505597
关于科研通互助平台的介绍 1471086