亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Machine learning drives fast and accurate calibration of carbon nanotube contact parameters

物理 碳纳米管 校准 纳米技术 量子力学 材料科学
作者
Chenyu Gao,Xijun Zhang,Dianming Chu,Wenjuan Bai,Mingrui Liu,Yan Li,Yan He
出处
期刊:Physics of Fluids [American Institute of Physics]
卷期号:37 (2)
标识
DOI:10.1063/5.0253303
摘要

The contact parameters of carbon nanotubes (CNTs) particles play a crucial role in measuring mobility, predicting structure, optimizing materials, and many other aspects. However, the complexity and severe challenges posed by the micro- and nano-scale sizes, along with the inhomogeneity of the particles, significantly impede experimental investigations, making it difficult to acquire precise contact parameters. To date, CNTs have not been found as a contact model for agglomerated particles. In this paper, a new method of contact parameter refinement is proposed for determining the contact parameters of CNTs agglomerated particles during fluidization. Initially, the angle of repose (AOR) and density of CNTs agglomerated particles are determined based on physical tests, leading to the identification of recommended ranges for six contact parameters. Subsequently, the three contact parameters with the most significant effects are screened based on Plackett-Burman. The Response Surface Methodology, Sympy, and Fully Connected Neural Network (FCNN) are then employed as prediction models for comparison against numerical simulations for validation, resulting in a reduction of the FCNN model's relative error from 14.81% to 2.09%. Finally, the optimal multi-objective parameter combination coefficients (0.45/0.45/0.121/0.76/0.74/0.13) are determined by optimizing the inversion based on the selected best FCNN model under the experimentally measured AOR of 40.3°. Numerical simulations based on this parameter and comparative experiments with an error of only 0.07° fully demonstrate the effectiveness of the proposed strategy. This study provides the possibility to accurately simulate the fluidization pattern of CNTs and further investigate their growth mechanism.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
忧郁小鸽子完成签到,获得积分10
刚刚
刚刚
4秒前
SarahG完成签到,获得积分10
6秒前
翟老师完成签到,获得积分10
6秒前
8秒前
翟老师发布了新的文献求助10
10秒前
CipherSage应助天真咖啡豆采纳,获得10
11秒前
南风发布了新的文献求助10
14秒前
25秒前
30秒前
dddd完成签到 ,获得积分20
35秒前
39秒前
1分钟前
神秘玩家完成签到 ,获得积分10
1分钟前
俭朴蜜蜂完成签到 ,获得积分10
1分钟前
科研通AI5应助rerorero18采纳,获得10
1分钟前
1分钟前
1分钟前
Rita应助淡然的蚂蚁采纳,获得10
1分钟前
肆陆发布了新的文献求助10
1分钟前
彭于晏应助傲娇的觅翠采纳,获得10
1分钟前
科研通AI5应助天真咖啡豆采纳,获得10
2分钟前
herococa完成签到,获得积分10
2分钟前
淡然的蚂蚁完成签到,获得积分10
2分钟前
Yvonne完成签到,获得积分10
2分钟前
2分钟前
2分钟前
无花果应助易璇璇采纳,获得10
2分钟前
明亮紫易完成签到,获得积分10
2分钟前
华仔应助科研通管家采纳,获得10
2分钟前
科研通AI2S应助科研通管家采纳,获得10
2分钟前
Ji完成签到,获得积分10
2分钟前
2分钟前
易璇璇发布了新的文献求助10
2分钟前
易璇璇完成签到,获得积分10
3分钟前
jeff完成签到,获得积分10
3分钟前
3分钟前
ppppppp_76完成签到 ,获得积分10
4分钟前
4分钟前
高分求助中
【此为提示信息,请勿应助】请按要求发布求助,避免被关 20000
Continuum Thermodynamics and Material Modelling 2000
Encyclopedia of Geology (2nd Edition) 2000
105th Edition CRC Handbook of Chemistry and Physics 1600
ISCN 2024 – An International System for Human Cytogenomic Nomenclature (2024) 1500
Izeltabart tapatansine - AdisInsight 800
Maneuvering of a Damaged Navy Combatant 650
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3773657
求助须知:如何正确求助?哪些是违规求助? 3319141
关于积分的说明 10193301
捐赠科研通 3033802
什么是DOI,文献DOI怎么找? 1664709
邀请新用户注册赠送积分活动 796270
科研通“疑难数据库(出版商)”最低求助积分说明 757416