Advancing regenerative medicine: the Aceman System’s pioneering automation and machine learning in mesenchymal stem cell biofabrication

生物制造 生物加工 再生医学 间充质干细胞 计算机科学 故障排除 人工智能 个性化 系统工程 制造工程 生物技术 干细胞 工程类 生物医学工程 生物 组织工程 操作系统 细胞生物学 遗传学 万维网
作者
Kai Zhu,Yi Ding,Yuqiang Chen,Kai Su,Jintu Zheng,Yu Zhang,Ying Hu,Jun Wei,Zenan Wang
出处
期刊:Biofabrication [IOP Publishing]
标识
DOI:10.1088/1758-5090/adb803
摘要

Abstract Mesenchymal stem cells (MSCs) are pivotal in advancing regenerative medicine; however, the large-scale production of MSCs for clinical applications faces significant challenges related to efficiency, cost, and quality assurance. We introduce the Automated Cell Manufacturing System (Aceman), a revolutionary solution that leverages machine learning and robotics integration to optimize MSC production. This innovative system enhances both efficiency and quality in the field of regenerative medicine. With a modular design that adheres to Good Manufacturing Practice (GMP) standards, Aceman allows for scalable adherent cell cultures. A sophisticated machine learning algorithm has been developed to streamline cell counting and confluence assessment, while the accompanying control software features customization options, robust data management, and real-time monitoring capabilities. Comparative studies reveal that Aceman achieves superior efficiency in analytical and repeatable tasks compared to traditional manual methods. The system’s continuous operation minimizes human error, offering substantial long-term benefits. Comprehensive cell biology assays, including Bulk RNA-Seq analysis and flow cytometry, support that the cells produced by Aceman function comparably to those cultivated through conventional techniques. Importantly, Aceman maintains the characteristic immunophenotype of MSCs during automated subcultures, representing a significant advancement in cell production technology. This system lays a solid foundation for future innovations in healthcare biomanufacturing, ultimately enhancing the potential of MSCs in therapeutic applications.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
帅狗发布了新的文献求助10
1秒前
1秒前
1秒前
2秒前
2秒前
4秒前
science完成签到,获得积分10
4秒前
4秒前
桐桐应助俭朴依丝采纳,获得30
4秒前
4秒前
4秒前
5秒前
自信松思发布了新的文献求助10
5秒前
6秒前
驰驰发布了新的文献求助10
7秒前
帅狗完成签到,获得积分10
7秒前
9秒前
henxi发布了新的文献求助10
9秒前
10秒前
小菜发布了新的文献求助10
10秒前
科研通AI5应助longtengfei采纳,获得10
11秒前
2333发布了新的文献求助10
11秒前
英俊延恶发布了新的文献求助10
14秒前
14秒前
Akim应助我被猪艾特了采纳,获得10
15秒前
852应助晴枫3648采纳,获得10
15秒前
YMY完成签到,获得积分10
16秒前
MoL完成签到,获得积分10
16秒前
17秒前
17秒前
YANG完成签到 ,获得积分10
17秒前
CipherSage应助孙婉莹采纳,获得10
17秒前
18秒前
共享精神应助无知小白采纳,获得10
18秒前
小孟发布了新的文献求助30
19秒前
jkdzp完成签到 ,获得积分10
20秒前
ach发布了新的文献求助10
21秒前
21秒前
搜集达人应助小婷君采纳,获得10
23秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Kelsen’s Legacy: Legal Normativity, International Law and Democracy 1000
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
Dynamika przenośników łańcuchowych 600
Recent progress and new developments in post-combustion carbon-capture technology with reactive solvents 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3538611
求助须知:如何正确求助?哪些是违规求助? 3116370
关于积分的说明 9324948
捐赠科研通 2814129
什么是DOI,文献DOI怎么找? 1546497
邀请新用户注册赠送积分活动 720575
科研通“疑难数据库(出版商)”最低求助积分说明 712086