Best clinical model predicting extubation failure: a diagnostic accuracy post hoc analysis

医学 机械通风 尤登J统计 通风(建筑) 析因分析 内科学 心脏病学 接收机工作特性 机械工程 工程类
作者
Patricia Rodríguez Villamizar,Arnaud W. Thille,Manuel Doblas,J. P. Frat,Pilar Leal Sanz,E Fernández Alonso,Victoria País,Guillermo Morales,Laura Colinas,Alicia Propín,Adriana Olivares,Mònica Balaguer,D Rodrigo,Gonzalo Hernández
出处
期刊:Intensive Care Medicine [Springer Nature]
标识
DOI:10.1007/s00134-024-07758-0
摘要

Predicting extubation failure remains a clinical challenge. This study aimed to determine diagnostic accuracy of models used at the bed side. Post hoc analysis of 2341 patients at all risk included in five multicenter randomized trials. Diagnostic accuracy of three clinical prediction models was compared: 3-factors model including age > 65y, chronic heart or pulmonary disease; 4-factors model adding prolonged mechanical ventilation; and 11-factors model including age > 65 years, ≥ 2 comorbidities, prolonged mechanical ventilation, acute heart failure as the primary indication for mechanical ventilation, moderate-to-severe chronic obstructive pulmonary disease, APACHE II score > 12 on extubation day, airway patency problems, inability to deal with respiratory secretions, not simple weaning, obesity, or hypercapnia at the end of the spontaneous breathing trial. Crude and adjusted for spontaneous breathing trial (SBT) models were compared for all-cause reintubation at 7 days using Youden and Kappa indexes. The 3-factors model had a very low global prediction capability (Youden index 0.08 and Kappa index 0.04); the 4-factors and 11-factors models had low global prediction capability (Youden index 0.12 and 0.16, and Kappa index 0.06 and 0.07, respectively). Aggressive SBT strategies (pressure support ≥ 7 cm H2O with or without positive end-expiratory pressure) were associated with extubation failure risk (p < 0.001). All adjusted models had low diagnostic capability (0.08/0.03, 0.07/0.03, and 0.06/0.02 respectively). Based on these results, the 3-factors model reported a very low diagnostic accuracy, and the 4 or 11-factors models showed similar low accuracy. No improvement was observed after adjusting for other aspects of weaning.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
kokodayour完成签到,获得积分10
刚刚
Quin完成签到,获得积分10
刚刚
刚刚
冷艳乐松完成签到,获得积分10
1秒前
1秒前
1秒前
诸葛雪兰完成签到,获得积分10
2秒前
洛尚完成签到,获得积分10
2秒前
czq完成签到,获得积分10
2秒前
VVhahaha完成签到,获得积分10
3秒前
limof发布了新的文献求助10
3秒前
4秒前
小葡萄完成签到 ,获得积分10
4秒前
5秒前
wu发布了新的文献求助30
5秒前
6秒前
毕业就好发布了新的文献求助10
6秒前
6秒前
6秒前
冷艳乐松发布了新的文献求助10
7秒前
iedq完成签到 ,获得积分10
7秒前
嗯呢发布了新的文献求助10
7秒前
vivienne完成签到,获得积分10
7秒前
搜集达人应助2021的萌爷爷采纳,获得10
7秒前
烟花不能太放肆关注了科研通微信公众号
7秒前
zyy完成签到,获得积分10
7秒前
8秒前
8秒前
wanci应助细腻晓露采纳,获得10
8秒前
Lucas应助XinyiZhang采纳,获得10
9秒前
科研通AI2S应助芋头采纳,获得10
10秒前
瘦瘦的铅笔完成签到 ,获得积分10
10秒前
manan发布了新的文献求助10
10秒前
01259发布了新的文献求助30
10秒前
10秒前
斯文败类应助zyh945采纳,获得10
10秒前
南山无梅落完成签到 ,获得积分10
10秒前
淡定吃吃完成签到,获得积分10
10秒前
科研通AI5应助称心砖头采纳,获得10
11秒前
淡淡从蕾完成签到,获得积分10
11秒前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Social media impact on athlete mental health: #RealityCheck 1020
Ensartinib (Ensacove) for Non-Small Cell Lung Cancer 1000
Unseen Mendieta: The Unpublished Works of Ana Mendieta 1000
Bacterial collagenases and their clinical applications 800
El viaje de una vida: Memorias de María Lecea 800
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3527521
求助须知:如何正确求助?哪些是违规求助? 3107606
关于积分的说明 9286171
捐赠科研通 2805329
什么是DOI,文献DOI怎么找? 1539901
邀请新用户注册赠送积分活动 716827
科研通“疑难数据库(出版商)”最低求助积分说明 709740