Current status, challenges, and prospects of artificial intelligence applications in wound repair theranostics

纳米技术 医学 计算机科学 材料科学
作者
Huazhen Liu,Wenbin Sun,Weihuang Cai,Kaidi Luo,Chunxiang Lü,Aoxiang Jin,Jiantao Zhang,Yuanyuan Liu
出处
期刊:Theranostics [Ivyspring International Publisher]
卷期号:15 (5): 1662-1688 被引量:1
标识
DOI:10.7150/thno.105109
摘要

Skin injuries caused by physical, pathological, and chemical factors not only compromise appearance and barrier function but can also lead to life-threatening microbial infections, posing significant challenges for patients and healthcare systems. Artificial intelligence (AI) technology has demonstrated substantial advantages in processing and analyzing image information. Recently, AI-based methods and algorithms, including machine learning, deep learning, and neural networks, have been extensively explored in wound care and research, providing effective clinical decision support for wound diagnosis, treatment, prognosis, and rehabilitation. However, challenges remain in achieving a closed-loop care system for the comprehensive application of AI in wound management, encompassing wound diagnosis, monitoring, and treatment. This review comprehensively summarizes recent advancements in AI applications in wound repair. Specifically, it discusses AI's role in injury type classification, wound measurement (including area and depth), wound tissue type classification, wound monitoring and prediction, and personalized treatment. Additionally, the review addresses the challenges and limitations AI faces in wound management. Finally, recommendations for the application of AI in wound repair are proposed, along with an outlook on future research directions, aiming to provide scientific evidence and technological support for further advancements in AI-driven wound repair theranostics.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
用户12306完成签到,获得积分10
1秒前
无语的从云完成签到,获得积分10
2秒前
Bin_Liu发布了新的文献求助10
3秒前
kekekelili完成签到,获得积分10
3秒前
3秒前
自信的忆文完成签到,获得积分10
3秒前
用户12306发布了新的文献求助20
3秒前
cmw完成签到,获得积分10
4秒前
4秒前
旧旧完成签到 ,获得积分10
4秒前
iNk应助sanch采纳,获得10
4秒前
dd完成签到,获得积分10
5秒前
冬瓜有内涵呐完成签到,获得积分10
5秒前
wonderful完成签到,获得积分10
6秒前
普通用户30号完成签到 ,获得积分10
6秒前
小马甲应助子车半邪采纳,获得10
6秒前
斗牛的番茄完成签到 ,获得积分10
6秒前
7秒前
专心搞学术完成签到,获得积分10
8秒前
科研发布了新的文献求助10
8秒前
FAN完成签到,获得积分10
9秒前
baiqi发布了新的文献求助10
9秒前
Lee发布了新的文献求助20
9秒前
GGBond完成签到,获得积分10
10秒前
123完成签到,获得积分10
11秒前
墨染完成签到,获得积分10
11秒前
鹿鹿完成签到 ,获得积分10
12秒前
务实的胡萝卜完成签到 ,获得积分10
13秒前
神经哇发布了新的文献求助10
13秒前
田様应助怕孤单的思雁采纳,获得10
15秒前
充电宝应助oyy318采纳,获得10
15秒前
16秒前
伶俐的星月完成签到,获得积分10
16秒前
自由意志完成签到 ,获得积分10
16秒前
烟雨完成签到,获得积分10
16秒前
16秒前
Hyde完成签到,获得积分10
17秒前
落寞白曼完成签到,获得积分10
17秒前
practice完成签到,获得积分10
17秒前
烟花应助文艺涵菡采纳,获得10
17秒前
高分求助中
All the Birds of the World 4000
Production Logging: Theoretical and Interpretive Elements 3000
Les Mantodea de Guyane Insecta, Polyneoptera 2000
Machine Learning Methods in Geoscience 1000
Resilience of a Nation: A History of the Military in Rwanda 888
Essentials of Performance Analysis in Sport 500
Measure Mean Linear Intercept 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 物理 生物化学 纳米技术 计算机科学 化学工程 内科学 复合材料 物理化学 电极 遗传学 量子力学 基因 冶金 催化作用
热门帖子
关注 科研通微信公众号,转发送积分 3729435
求助须知:如何正确求助?哪些是违规求助? 3274538
关于积分的说明 9986118
捐赠科研通 2989669
什么是DOI,文献DOI怎么找? 1640718
邀请新用户注册赠送积分活动 779303
科研通“疑难数据库(出版商)”最低求助积分说明 748188