材料科学
离子电导率
电解质
电导率
Boosting(机器学习)
快离子导体
化学工程
无机化学
电极
物理化学
化学
机器学习
计算机科学
工程类
作者
Ruihua Zhou,Ajay Gautam,Emmanuelle Suard,Shenghao Li,Swapna Ganapathy,Kai Chen,Xin Zhang,Ce‐Wen Nan,Shuo Wang,Marnix Wagemaker
标识
DOI:10.1002/adfm.202420971
摘要
Abstract Lithium argyrodite thiophosphate superionic conductors are being explored as promising solid electrolytes for all‐solid‐state batteries, primarily due to their high ionic conductivity and ease of processing. Yet, these electrolytes present challenges such as chemical instability in humid conditions and incompatibility with cathode materials. Although some lithium argyrodites show improved air stability, their ionic conductivity deteriorates below the practically required value. Herein, based on hard soft acid base theory, a new family of lithium argyrodite, as solid solution Li 6−x AsS 5−x Br 1+x (for 0.0 ≤ x ≤ 0.6), has been proposed to address these issues. Through a combination of neutron diffraction, NMR spectroscopy, and electrochemical impedance spectroscopy, it has been determined that the partial substitution of S 2− by Br − weakens interactions within the Li + “cage”, facilitating long lithium‐ion movement throughout the structure. An additional T4 Li + site is identified, offering a lower energy barrier for inter‐cage jumps. Consequently, the Li 5.5 AsS 4.5 Br 1.5 member of the composition series exhibits a higher Li‐ion diffusivity resulting in a remarkable ionic conductivity of 15.4 mS cm −1 . Compared with lithium thiophosphates, the Li 5.5 AsS 4.5 Br 1.5 also shows excellent air stability. This research opens a new avenue for developing air‐stable sulfide solid electrolytes with high ionic conductivity necessitated for practical application in solid‐state batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI