氧化还原
阴极
材料科学
电子转移
钾
离子
降级(电信)
价(化学)
电子
碱金属
电子传输链
化学工程
化学物理
无机化学
光化学
物理化学
化学
物理
量子力学
工程类
冶金
电信
生物化学
有机化学
计算机科学
作者
Lichen Wu,Zhongqin Dai,Hongwei Fu,Mengkang Shen,Limei Cha,Yue Lin,Fanfei Sun,Apparao M. Rao,Jiang Zhou,Shuangchun Wen,Bingan Lu
标识
DOI:10.1002/adma.202416298
摘要
Abstract Single‐electron transfer, low alkali metal contents, and large‐molecular masses limit the capacity of cathodes. This study uses a cost‐effective and light‐molecular‐mass orthosilicate material, K 2 FeSiO 4 , with a high initial potassium content, as a cathode for potassium‐ion batteries to enable the transfer of more than one electron. Despite the limited valence change of Fe ions during cycling, K 2 FeSiO 4 can undergo multiple electron transfers via successive oxygen anionic redox reactions to generate a high reversible capacity. Although the formation of O‒O dimers in K 2 FeSiO 4 occur upon removing large amounts of potassium, the strong binding effect of Si on O mitigates irreversible oxygen release and voltage degradation during cycling. K 2 FeSiO 4 achieves 236 mAh g −1 at 50 mA g −1 , with an energy density of 520 Wh kg −1 , which can be comparable with commercial LiFePO 4 materials. Moreover, it also exhibits 1400 stable cycles under high‐current conditions. These findings enhance the potential commercialization prospects for potassium‐ion batteries.
科研通智能强力驱动
Strongly Powered by AbleSci AI