Computational Fluid Dynamics (CFD) Modeling of Material Transport through Triply Periodic Minimal Surface (TPMS) Scaffolds for Bone Tissue Engineering

计算流体力学 脚手架 组织工程 生物医学工程 剪应力 流体力学 湍流 材料科学 再生(生物学) 工作(物理) 机械工程 机械 纳米技术 工程类 复合材料 物理 细胞生物学 生物
作者
Brandon Coburn,Roozbeh Salary
出处
期刊:Journal of biomechanical engineering [ASME International]
卷期号:: 1-32 被引量:1
标识
DOI:10.1115/1.4067575
摘要

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration. The objective of the work is to establish computational fluid dynamics (CFD) models to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS). In this study, advanced CFD models were established based on ten TPMS designs for analyzing (i) single-unit internal flow, (ii) single-unit external flow, and (iii) cubic, full-scaffold external flow. The main fluid characteristics influential in bone regeneration, including flow velocity, pressure, and wall shear stress (WSS), were analyzed to assess material transport internally through and externally over the TPMS designs. Schwarz Primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues). An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of turbulent motion along the curved surfaces of the TPMS designs. Besides, pressure buildup was observed within the inner channels of almost all the TPMS designs. Overall, the outcomes of this study pave the way for optimal design and fabrication of bone-like tissues with desirable medical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
科目三应助科研通管家采纳,获得10
刚刚
小杭76应助科研通管家采纳,获得10
刚刚
刚刚
小杭76应助科研通管家采纳,获得10
刚刚
ding应助科研通管家采纳,获得10
刚刚
小杭76应助科研通管家采纳,获得10
1秒前
斯文败类应助科研通管家采纳,获得10
1秒前
浮游应助科研通管家采纳,获得10
1秒前
乐乐应助杨院采纳,获得10
1秒前
zp发布了新的文献求助10
2秒前
3秒前
3秒前
朴素豪完成签到,获得积分10
3秒前
丘比特应助言小采纳,获得10
4秒前
Wencher发布了新的文献求助10
5秒前
6秒前
lucky发布了新的文献求助10
6秒前
科研通AI6应助整齐的鹭洋采纳,获得10
8秒前
8秒前
8秒前
雅思莫拉完成签到,获得积分10
8秒前
9秒前
老阎应助苏芋采纳,获得30
9秒前
大气伯云发布了新的文献求助10
10秒前
12秒前
无限的书芹完成签到 ,获得积分10
13秒前
刘院发布了新的文献求助10
14秒前
香蕉面包完成签到 ,获得积分10
14秒前
14秒前
可爱的函函应助清新的S采纳,获得10
14秒前
科研通AI6应助白白采纳,获得10
17秒前
池台下完成签到 ,获得积分10
18秒前
MollyD发布了新的文献求助10
19秒前
Owen应助从容开山采纳,获得10
20秒前
Owen应助小曾采纳,获得10
22秒前
lili完成签到 ,获得积分10
22秒前
22秒前
23秒前
充电宝应助Leffzeng采纳,获得10
23秒前
量子星尘发布了新的文献求助10
23秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
The Social Work Ethics Casebook: Cases and Commentary (revised 2nd ed.).. Frederic G. Reamer 1070
Item Response Theory 1000
Introduction to Early Childhood Education 1000
2025-2031年中国兽用抗生素行业发展深度调研与未来趋势报告 1000
List of 1,091 Public Pension Profiles by Region 921
Identifying dimensions of interest to support learning in disengaged students: the MINE project 600
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5428829
求助须知:如何正确求助?哪些是违规求助? 4542429
关于积分的说明 14180552
捐赠科研通 4460086
什么是DOI,文献DOI怎么找? 2445612
邀请新用户注册赠送积分活动 1436824
关于科研通互助平台的介绍 1414012