Computational Fluid Dynamics (CFD) Modeling of Material Transport through Triply Periodic Minimal Surface (TPMS) Scaffolds for Bone Tissue Engineering

计算流体力学 脚手架 组织工程 生物医学工程 剪应力 流体力学 湍流 材料科学 再生(生物学) 工作(物理) 机械工程 机械 纳米技术 工程类 复合材料 物理 细胞生物学 生物
作者
Brandon Coburn,Roozbeh Salary
出处
期刊:Journal of biomechanical engineering [ASM International]
卷期号:: 1-32 被引量:1
标识
DOI:10.1115/1.4067575
摘要

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration. The objective of the work is to establish computational fluid dynamics (CFD) models to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS). In this study, advanced CFD models were established based on ten TPMS designs for analyzing (i) single-unit internal flow, (ii) single-unit external flow, and (iii) cubic, full-scaffold external flow. The main fluid characteristics influential in bone regeneration, including flow velocity, pressure, and wall shear stress (WSS), were analyzed to assess material transport internally through and externally over the TPMS designs. Schwarz Primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues). An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of turbulent motion along the curved surfaces of the TPMS designs. Besides, pressure buildup was observed within the inner channels of almost all the TPMS designs. Overall, the outcomes of this study pave the way for optimal design and fabrication of bone-like tissues with desirable medical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
抗体小王完成签到,获得积分10
刚刚
振宇发布了新的文献求助30
刚刚
刚刚
fffff完成签到,获得积分10
刚刚
莫非完成签到,获得积分10
刚刚
liang19640908完成签到 ,获得积分10
刚刚
刚刚
humaning完成签到,获得积分10
刚刚
Kinkrit完成签到 ,获得积分10
1秒前
送外卖了完成签到,获得积分10
1秒前
雪山飞虹发布了新的文献求助10
1秒前
听语说完成签到,获得积分10
1秒前
YiqingGu完成签到 ,获得积分10
1秒前
1秒前
老刀完成签到,获得积分10
1秒前
ray发布了新的文献求助10
1秒前
zzk完成签到,获得积分20
1秒前
awrawsaf完成签到 ,获得积分10
1秒前
韶芸遥完成签到,获得积分10
2秒前
ZZZ完成签到,获得积分20
2秒前
2秒前
量子星尘发布了新的文献求助10
2秒前
小赵发布了新的文献求助10
2秒前
代睿完成签到,获得积分10
2秒前
交大市长完成签到,获得积分10
3秒前
3秒前
sudor123456完成签到,获得积分10
3秒前
cij123完成签到,获得积分10
4秒前
4秒前
4秒前
多云完成签到 ,获得积分10
4秒前
scholars完成签到,获得积分10
4秒前
大模型应助ceds采纳,获得10
5秒前
幸福五发布了新的文献求助10
5秒前
哈哈哈哈哈完成签到,获得积分10
5秒前
5秒前
鳗鱼绿蝶完成签到,获得积分20
6秒前
xxy完成签到,获得积分10
6秒前
7秒前
邰雪磊发布了新的文献求助10
7秒前
高分求助中
Comprehensive Toxicology Fourth Edition 24000
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Hydrothermal Circulation and Seawater Chemistry: Links and Feedbacks 1200
Pipeline and riser loss of containment 2001 - 2020 (PARLOC 2020) 1000
World Nuclear Fuel Report: Global Scenarios for Demand and Supply Availability 2025-2040 800
Risankizumab Versus Ustekinumab For Patients with Moderate to Severe Crohn's Disease: Results from the Phase 3B SEQUENCE Study 600
Oxford Learner's Pocket Word Skills 500
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 5150811
求助须知:如何正确求助?哪些是违规求助? 4346573
关于积分的说明 13533545
捐赠科研通 4189288
什么是DOI,文献DOI怎么找? 2297425
邀请新用户注册赠送积分活动 1297790
关于科研通互助平台的介绍 1242353