已入深夜,您辛苦了!由于当前在线用户较少,发布求助请尽量完整地填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!祝你早点完成任务,早点休息,好梦!

Computational Fluid Dynamics (CFD) Modeling of Material Transport through Triply Periodic Minimal Surface (TPMS) Scaffolds for Bone Tissue Engineering

计算流体力学 脚手架 组织工程 生物医学工程 剪应力 流体力学 湍流 材料科学 再生(生物学) 工作(物理) 机械工程 机械 纳米技术 工程类 复合材料 物理 细胞生物学 生物
作者
Brandon Coburn,Roozbeh Salary
出处
期刊:Journal of biomechanical engineering [ASME International]
卷期号:: 1-32 被引量:1
标识
DOI:10.1115/1.4067575
摘要

Cell-laden, scaffold-based tissue engineering methods have been successfully utilized for the treatment of bone fractures. In such methods, the rate of scaffold biodegradation, transport of nutrients, and removal of cell metabolic wastes are critical fluid-dynamics factors, affecting tissue regeneration. Therefore, there is a critical need to identify the underlying material transport mechanisms associated with stem cell-driven, scaffold-based bone tissue regeneration. The objective of the work is to establish computational fluid dynamics (CFD) models to identify the consequential mechanisms behind internal and external material transport through/over porous bone scaffolds designed based on the principles of triply periodic minimal surfaces (TPMS). In this study, advanced CFD models were established based on ten TPMS designs for analyzing (i) single-unit internal flow, (ii) single-unit external flow, and (iii) cubic, full-scaffold external flow. The main fluid characteristics influential in bone regeneration, including flow velocity, pressure, and wall shear stress (WSS), were analyzed to assess material transport internally through and externally over the TPMS designs. Schwarz Primitive (P) appeared to have the lowest level of flow pressure and WSS (desirable for development of bone tissues). An analysis of streamline velocity exhibited an increase in velocity togther with a depiction of turbulent motion along the curved surfaces of the TPMS designs. Besides, pressure buildup was observed within the inner channels of almost all the TPMS designs. Overall, the outcomes of this study pave the way for optimal design and fabrication of bone-like tissues with desirable medical properties.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Kai完成签到 ,获得积分10
1秒前
陈子宇完成签到 ,获得积分10
1秒前
归去来兮发布了新的文献求助10
2秒前
解语花完成签到,获得积分10
2秒前
4秒前
解语花发布了新的文献求助200
5秒前
5秒前
池雨完成签到 ,获得积分10
5秒前
10秒前
王瑶发布了新的文献求助10
10秒前
冰冰发布了新的文献求助10
10秒前
小熊天天学习完成签到 ,获得积分10
13秒前
lixia完成签到 ,获得积分10
15秒前
Jodie发布了新的文献求助10
15秒前
gugugu发布了新的文献求助10
16秒前
飘逸的语琴完成签到,获得积分20
16秒前
冰冰完成签到,获得积分20
16秒前
17秒前
王瑶完成签到,获得积分20
17秒前
huanger完成签到,获得积分0
20秒前
小胖子发布了新的文献求助10
22秒前
wlp鹏完成签到,获得积分10
22秒前
Bella完成签到 ,获得积分10
24秒前
Alex发布了新的文献求助200
24秒前
雪生在无人荒野完成签到,获得积分10
24秒前
hay完成签到,获得积分20
25秒前
波波波波波6764完成签到 ,获得积分10
28秒前
JamesPei应助个性冰海采纳,获得10
35秒前
37秒前
飘逸的语琴关注了科研通微信公众号
43秒前
43秒前
44秒前
45秒前
45秒前
个性冰海发布了新的文献求助10
49秒前
49秒前
蓝色的鱼发布了新的文献求助10
50秒前
dd发布了新的文献求助10
50秒前
jml完成签到,获得积分10
52秒前
cong完成签到 ,获得积分10
54秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Treatise on Geochemistry (Third edition) 1600
Clinical Microbiology Procedures Handbook, Multi-Volume, 5th Edition 1000
List of 1,091 Public Pension Profiles by Region 981
医养结合概论 500
On the application of advanced modeling tools to the SLB analysis in NuScale. Part I: TRACE/PARCS, TRACE/PANTHER and ATHLET/DYN3D 500
L-Arginine Encapsulated Mesoporous MCM-41 Nanoparticles: A Study on In Vitro Release as Well as Kinetics 500
热门求助领域 (近24小时)
化学 材料科学 医学 生物 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 物理化学 基因 遗传学 催化作用 冶金 量子力学 光电子学
热门帖子
关注 科研通微信公众号,转发送积分 5458782
求助须知:如何正确求助?哪些是违规求助? 4564757
关于积分的说明 14296896
捐赠科研通 4489835
什么是DOI,文献DOI怎么找? 2459317
邀请新用户注册赠送积分活动 1449038
关于科研通互助平台的介绍 1424524