Combination ATR-FTIR with Multiple Classification Algorithms for Authentication of the Four Medicinal Plants from Curcuma L. in Rhizomes and Tuberous Roots

姜黄 根茎 支持向量机 平滑的 药用植物 鉴定(生物学) 人工智能 传统医学 计算机科学 生物系统 化学 算法 计算生物学 数学 生物 植物 医学 统计
作者
Qiuyi Wen,Wenlong Wei,Yun Li,Dan Chen,Jianqing Zhang,Zhenwei Li,De‐an Guo
出处
期刊:Sensors [MDPI AG]
卷期号:25 (1): 50-50
标识
DOI:10.3390/s25010050
摘要

Curcumae Longae Rhizoma (CLRh), Curcumae Radix (CRa), and Curcumae Rhizoma (CRh), derived from the different medicinal parts of the Curcuma species, are blood-activating analgesics commonly used for promoting blood circulation and relieving pain. Due to their certain similarities in chemical composition and pharmacological effects, these three herbs exhibit a high risk associated with mixing and indiscriminate use. The diverse methods used for distinguishing the medicinal origins are complex, time-consuming, and limited to intraspecific differentiation, which are not suitable for rapid and systematic identification. We developed a rapid analysis method for identification of affinis and different medicinal materials using attenuated total reflection-Fourier-transform infrared spectroscopy (ATR-FTIR) combined with machine learning algorithms. The original spectroscopic data were pretreated using derivatives, standard normal variate (SNV), multiplicative scatter correction (MSC), and smoothing (S) methods. Among them, 1D + MSC + 13S emerged as the best pretreatment method. Then, t-distributed stochastic neighbor embedding (t-SNE) was applied to visualize the results, and seven kinds of classification models were constructed. The results showed that support vector machine (SVM) modeling was superior to other models and the accuracy of validation and prediction was preferable, with a modeling time of 127.76 s. The established method could be employed to rapidly and effectively distinguish the different origins and parts of Curcuma species and thus provides a technique for rapid quality evaluation of affinis species.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
刚刚
刚刚
1秒前
1秒前
2秒前
2秒前
万能图书馆应助小汤采纳,获得10
2秒前
zhunzhunzhun完成签到,获得积分10
3秒前
4秒前
范范发布了新的文献求助10
5秒前
LonelyJudger发布了新的文献求助10
5秒前
flq发布了新的文献求助10
6秒前
老实大米发布了新的文献求助10
6秒前
7秒前
guozizi发布了新的文献求助10
7秒前
wanli完成签到,获得积分10
7秒前
steven完成签到 ,获得积分10
9秒前
9秒前
渊崖曙春应助年轻的晋鹏采纳,获得10
10秒前
卷心菜完成签到,获得积分10
10秒前
11秒前
11秒前
11秒前
12秒前
打打应助LonelyJudger采纳,获得10
12秒前
康桥发布了新的文献求助10
13秒前
幽壑之潜蛟应助枫叶采纳,获得10
13秒前
orixero应助枫叶采纳,获得10
13秒前
13秒前
16秒前
ppp完成签到,获得积分10
16秒前
黄洁滢发布了新的文献求助10
17秒前
稳重采枫发布了新的文献求助10
17秒前
17秒前
怎么可能会凉完成签到 ,获得积分10
17秒前
万能图书馆应助小洛采纳,获得10
18秒前
19秒前
小汤发布了新的文献求助10
20秒前
epmoct完成签到 ,获得积分10
20秒前
snow_dragon完成签到 ,获得积分10
20秒前
高分求助中
Continuum thermodynamics and material modelling 3000
Production Logging: Theoretical and Interpretive Elements 2500
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Theory of Block Polymer Self-Assembly 750
지식생태학: 생태학, 죽은 지식을 깨우다 700
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3483701
求助须知:如何正确求助?哪些是违规求助? 3072962
关于积分的说明 9128742
捐赠科研通 2764574
什么是DOI,文献DOI怎么找? 1517253
邀请新用户注册赠送积分活动 701974
科研通“疑难数据库(出版商)”最低求助积分说明 700831