亲爱的研友该休息了!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您度过漫漫科研夜!身体可是革命的本钱,早点休息,好梦!

Automatic steel girder inspection system for high‐speed railway bridge using hybrid learning framework

桥(图论) 结构工程 大梁 计算机科学 工程类 梁桥 医学 内科学
作者
Tao Xu,Yunpeng Wu,Yong Qin,Sihui Long,Zhen Yang,Fengxiang Guo
出处
期刊:Computer-aided Civil and Infrastructure Engineering [Wiley]
标识
DOI:10.1111/mice.13409
摘要

Abstract The steel girder of high‐speed railway bridges requires regular inspections to ensure bridge stability and provide a safe environment for railway operations. Unmanned aerial vehicle (UAV)‐based inspection has great potential to become an efficient solution by offering superior aerial perspectives and mitigating safety concerns. Unfortunately, classic convolutional neural network (CNN) models suffer from limited detection accuracy or redundant model parameters, and existing CNN‐based bridge inspection systems are only designed for a single visual task (e.g., bolt detection or rust parsing only). This paper develops a novel bi‐task girder inspection network (i.e., BGInet) to recognize different types of surface defects on girder from UAV imagery. First, the network assembles an advanced detection branch that integrates the sparse attention module, extended efficient linear aggregation network, and RepConv to solve the small object with scarce samples and complete efficient bolt defect identification. Then, an innovative U‐shape saliency parsing branch is integrated into this system to supplement the detection branch and parse the rust regions. Smoothly, a pixel‐to‐real‐world mapping model utilizing critical UAV flight parameters is also developed and assembled to measure rust areas. Finally, extensive experiments conducted on the UAV‐based bridge girder dataset show our method achieves better detection accuracy over the current advanced models yet remains a reasonably high inference speed. The superior performance illustrates the system can effectively turn UAV imagery into useful information.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
4秒前
404NotFOUND应助科研通管家采纳,获得10
4秒前
饭饭发布了新的文献求助10
8秒前
14秒前
20秒前
Ava应助饭饭采纳,获得10
22秒前
xiao完成签到 ,获得积分10
26秒前
yoyo发布了新的文献求助20
29秒前
30秒前
上官若男应助cassie采纳,获得10
33秒前
FashionBoy应助Ade阿德采纳,获得10
38秒前
46秒前
49秒前
暖暖发布了新的文献求助10
49秒前
Ade阿德发布了新的文献求助10
53秒前
我是老大应助iorpi采纳,获得10
53秒前
星辰大海应助hxd采纳,获得10
1分钟前
结实白容发布了新的文献求助20
1分钟前
zyx完成签到,获得积分10
1分钟前
zqq完成签到,获得积分0
1分钟前
萨尔莫斯完成签到,获得积分20
1分钟前
科研通AI40应助虚幻的不评采纳,获得10
1分钟前
乐乐应助平常远山采纳,获得10
1分钟前
liuqiuchina完成签到,获得积分10
1分钟前
夜阑完成签到,获得积分10
1分钟前
朴素亦绿完成签到,获得积分10
1分钟前
1分钟前
可爱的函函应助VDC采纳,获得10
1分钟前
1分钟前
hxd发布了新的文献求助10
1分钟前
浦肯野举报否定之否定求助涉嫌违规
1分钟前
1分钟前
1分钟前
1分钟前
VDC发布了新的文献求助10
2分钟前
汉堡包应助科研通管家采纳,获得10
2分钟前
2分钟前
橙橙完成签到,获得积分10
2分钟前
2分钟前
cassie完成签到,获得积分10
2分钟前
高分求助中
Genetics: From Genes to Genomes 3000
Production Logging: Theoretical and Interpretive Elements 2500
Continuum thermodynamics and material modelling 2000
Healthcare Finance: Modern Financial Analysis for Accelerating Biomedical Innovation 2000
Applications of Emerging Nanomaterials and Nanotechnology 1111
Les Mantodea de Guyane Insecta, Polyneoptera 1000
Diabetes: miniguías Asklepios 800
热门求助领域 (近24小时)
化学 医学 材料科学 生物 工程类 有机化学 生物化学 纳米技术 内科学 物理 化学工程 计算机科学 复合材料 基因 遗传学 物理化学 催化作用 细胞生物学 免疫学 电极
热门帖子
关注 科研通微信公众号,转发送积分 3471419
求助须知:如何正确求助?哪些是违规求助? 3064459
关于积分的说明 9088179
捐赠科研通 2755113
什么是DOI,文献DOI怎么找? 1511775
邀请新用户注册赠送积分活动 698575
科研通“疑难数据库(出版商)”最低求助积分说明 698460