Sub-cellular Imaging of the Entire Protein-Coding Human Transcriptome (18933-plex) on FFPE Tissue Using Spatial Molecular Imaging

转录组 分子成像 计算生物学 生物 基因 基因表达 遗传学 体内
作者
Rustem Khafizov,Erin Piazza,Yi Cui,Michael Patrick,Tyler Hether,Daniel McGuire,Dwayne Dunaway,Patrick J. Danaher,Margaret L. Hoang,Andrew Grootsky,Megan E. Grout,Shanshan He,Rachel Liu,Michael McKean,Michael Rhodes,Joseph Beechem
标识
DOI:10.1101/2024.11.27.625536
摘要

Single-cell RNA-seq revolutionized single-cell biology, by providing a complete whole transcriptome view of individual cells. Regrettably, this was accomplished only for individual, tissue-dissociated cells. High-plex spatial biology has begun to recover the x, y, and z-coordinates of single-cells, but typically at the expense of far less than whole transcriptome coverage. To solve this problem, Bruker Spatial Biology has accomplished a commercial-grade panel (CosMx® Spatial Molecular Imager Whole Transcriptome Panel (WTx)), using 37,872 imaging barcodes, capable of sub-cellular imaging of the entire human protein-coding transcriptome. The imaging barcodes are encoded with 156 bits of information (4 on-cycles and 35 dark-cycles per code), at a Hamming Distance of 4 from each other to achieve a very low false-code detection. Key to achieving this high-plex capability was the ability to manufacture imaging barcodes that require no in-tissue amplification (every barcode is manufactured under GMP to contain exactly 30 fluorescent dyes) and uniform, size-exclusion purified, extremely small imaging barcodes (~ 20 nm). A detailed study of six different human FFPE tissue types was performed (Colon, Pancreas, Hippocampus, Skin, Breast, Kidney), yielding over 5.4 billion transcripts from 2.7 million cells. We counted over 1,550 transcripts-per-cell on average and observed 900 unique genes per cell (measured as the median). Single fixed-cells containing well over 10,000 subcellularly imaged transcripts were accomplished. Advancing single-cell imaging to the whole transcriptome level opens a single unified approach to accomplish essentially all single-cell experiments, both imaging and non-imaging. Depending upon the sample type (e.g. fixed-cells, organoids, tissue sections, etc.), the transcripts per cell and genes per cell measured using the whole transcriptome panel often exceeds that obtained by the highest-resolution single-cell RNA-seq, can be performed on a single 5 μm FFPE tissue section, with no dissociation bias (every cell is counted). Pathway analysis within the tumor bed of a colon adenocarcinoma sample found evidence of enrichment in pathways suggestive of an aggressive tumor type, and localized ligand-receptor analysis showed spatially restricted patterns related to adhesion, migration, and proliferation. The high-dimensional whole transcriptome data is streamed directly to a cloud-based Spatial Informatics Platform, allowing for the scalable processing of millions-of-single-cells and billions-of-transcripts per operation. The WTx data are combined with high-resolution antibody-based cell-morphology imaging and data-driven machine-learning cell segmentation algorithms, to generate the most complete view of single cell and sub-cellular spatial biology that has ever been obtained.
最长约 10秒,即可获得该文献文件

科研通智能强力驱动
Strongly Powered by AbleSci AI
更新
PDF的下载单位、IP信息已删除 (2025-6-4)

科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
delect完成签到,获得积分10
刚刚
zzzzzzzp完成签到,获得积分10
1秒前
Yang22完成签到,获得积分10
2秒前
2秒前
小包子完成签到,获得积分10
2秒前
量子星尘发布了新的文献求助10
2秒前
美好寒梦完成签到,获得积分10
3秒前
单薄不惜完成签到,获得积分10
3秒前
甜美的夏之完成签到,获得积分10
3秒前
畅快的长颈鹿完成签到,获得积分10
3秒前
风趣秋白完成签到,获得积分10
4秒前
Vanilla完成签到,获得积分0
4秒前
卢正萍完成签到 ,获得积分10
4秒前
念念完成签到,获得积分10
4秒前
ZBZM完成签到,获得积分10
4秒前
CHANYEOL完成签到,获得积分10
4秒前
一个小胖子完成签到,获得积分10
4秒前
5秒前
光亮白山完成签到 ,获得积分10
6秒前
涛tao完成签到,获得积分10
6秒前
意见少亿点完成签到 ,获得积分10
6秒前
6秒前
浮游应助zzl-2000采纳,获得10
7秒前
小康学弟发布了新的文献求助10
7秒前
yw完成签到,获得积分10
7秒前
77完成签到 ,获得积分10
8秒前
Shell完成签到,获得积分10
8秒前
Star1983完成签到,获得积分10
8秒前
哈哈喽完成签到,获得积分10
8秒前
科研通AI6应助科研通管家采纳,获得10
8秒前
Xylah应助科研通管家采纳,获得10
9秒前
科研通AI5应助科研通管家采纳,获得10
9秒前
Dean应助科研通管家采纳,获得50
9秒前
汉堡包应助科研通管家采纳,获得30
9秒前
Dean应助科研通管家采纳,获得50
9秒前
Lucas应助科研通管家采纳,获得10
9秒前
科研通AI6应助科研通管家采纳,获得10
9秒前
科研通AI2S应助科研通管家采纳,获得10
9秒前
9秒前
9秒前
高分求助中
(应助此贴封号)【重要!!请各用户(尤其是新用户)详细阅读】【科研通的精品贴汇总】 10000
Zeolites: From Fundamentals to Emerging Applications 1500
Encyclopedia of Materials: Plastics and Polymers 1000
Architectural Corrosion and Critical Infrastructure 1000
Early Devonian echinoderms from Victoria (Rhombifera, Blastoidea and Ophiocistioidea) 1000
Hidden Generalizations Phonological Opacity in Optimality Theory 1000
Handbook of Social and Emotional Learning, Second Edition 900
热门求助领域 (近24小时)
化学 医学 生物 材料科学 工程类 有机化学 内科学 生物化学 物理 计算机科学 纳米技术 遗传学 基因 复合材料 化学工程 物理化学 病理 催化作用 免疫学 量子力学
热门帖子
关注 科研通微信公众号,转发送积分 4927230
求助须知:如何正确求助?哪些是违规求助? 4196614
关于积分的说明 13033700
捐赠科研通 3969366
什么是DOI,文献DOI怎么找? 2175324
邀请新用户注册赠送积分活动 1192409
关于科研通互助平台的介绍 1103081