清晨好,您是今天最早来到科研通的研友!由于当前在线用户较少,发布求助请尽量完整的填写文献信息,科研通机器人24小时在线,伴您科研之路漫漫前行!

Single-cell sequencing uncovers the mechanistic role of DAPK1 in glioma and its diagnostic and prognostic implications

胶质瘤 免疫疗法 生物 基因 计算生物学 癌症 生物信息学 癌症研究 遗传学
作者
Tian-Hang Yu,Y Ding,Sophia Zhao,Jinzhuo Zhao,Yu Gu,Dong-Hui Chen,Fang Zhang,Wenming Hong
出处
期刊:Frontiers in Immunology [Frontiers Media SA]
卷期号:15 被引量:2
标识
DOI:10.3389/fimmu.2024.1463747
摘要

Background We conducted an investigation into the characteristics of single-cell differentiation data in gliomas, with a focus on developing DAPK1-based prognostic markers to predict patient outcomes. Dysregulated expression of DAPK1 has been associated with the invasive behavior of various malignancies, including gliomas. However, the precise role and underlying mechanisms of DAPK1 in gliomas remain inadequately understood. Methods We performed analyses on RNA-seq and microarray datasets from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), in addition to single-cell RNA sequencing (scRNA-seq) data from glioma patients available in GEO. Utilizing the Seurat R package, we identified gene clusters associated with survival from the scRNA-seq data. Prognostic models were developed using LASSO and stepwise regression algorithms. Furthermore, we assessed the predictive potential of these genes within the immune microenvironment and their relevance in immunotherapy contexts. Results Our scRNA-seq data analysis revealed 32 distinct cell clusters corresponding to 10 cell types. Through dimensionality reduction and clustering, we identified three glial cell subpopulations based on their differentiation trajectories. DAPK1, serving as a marker gene for the terminal subpopulation, exhibited an association with poor prognosis. Conclusions DAPK1-based prognostic models show promise for accurately predicting outcomes in glioblastoma and glioma. An in-depth examination of DAPK1’s specific mechanisms in glioblastoma could elucidate its role in immunotherapy response. Targeting the DAPK1 gene may offer therapeutic benefits for glioma patients.

科研通智能强力驱动
Strongly Powered by AbleSci AI
科研通是完全免费的文献互助平台,具备全网最快的应助速度,最高的求助完成率。 对每一个文献求助,科研通都将尽心尽力,给求助人一个满意的交代。
实时播报
Anto发布了新的文献求助10
1秒前
科研通AI5应助陈纸溪采纳,获得10
10秒前
conquer完成签到,获得积分10
54秒前
suiwuya完成签到,获得积分10
1分钟前
午后狂睡完成签到 ,获得积分10
1分钟前
Shicheng完成签到,获得积分10
1分钟前
Lucas应助文艺猫咪采纳,获得10
1分钟前
星辰大海应助xun采纳,获得10
2分钟前
krajicek完成签到,获得积分10
2分钟前
2分钟前
2分钟前
许子发布了新的文献求助10
2分钟前
文艺猫咪发布了新的文献求助10
2分钟前
jessicaw完成签到,获得积分10
2分钟前
2分钟前
Ji完成签到,获得积分10
2分钟前
白华苍松发布了新的文献求助10
2分钟前
gwbk完成签到,获得积分10
2分钟前
2分钟前
白华苍松发布了新的文献求助10
3分钟前
许子完成签到,获得积分10
3分钟前
今后应助Anto采纳,获得10
3分钟前
3分钟前
xun发布了新的文献求助10
4分钟前
缥缈雍发布了新的文献求助20
4分钟前
清净163完成签到,获得积分10
4分钟前
4分钟前
4分钟前
陈纸溪发布了新的文献求助10
4分钟前
4分钟前
5分钟前
5分钟前
领导范儿应助残月初升采纳,获得10
5分钟前
晴天娃娃完成签到 ,获得积分10
5分钟前
5分钟前
残月初升发布了新的文献求助10
5分钟前
6分钟前
白华苍松发布了新的文献求助10
6分钟前
wanci应助陈纸溪采纳,获得10
6分钟前
6分钟前
高分求助中
Continuum Thermodynamics and Material Modelling 3000
Production Logging: Theoretical and Interpretive Elements 2700
Mechanistic Modeling of Gas-Liquid Two-Phase Flow in Pipes 2500
Structural Load Modelling and Combination for Performance and Safety Evaluation 800
Conference Record, IAS Annual Meeting 1977 610
Interest Rate Modeling. Volume 3: Products and Risk Management 600
Interest Rate Modeling. Volume 2: Term Structure Models 600
热门求助领域 (近24小时)
化学 材料科学 生物 医学 工程类 有机化学 生物化学 物理 纳米技术 计算机科学 内科学 化学工程 复合材料 基因 遗传学 物理化学 催化作用 量子力学 光电子学 冶金
热门帖子
关注 科研通微信公众号,转发送积分 3555803
求助须知:如何正确求助?哪些是违规求助? 3131390
关于积分的说明 9391041
捐赠科研通 2831096
什么是DOI,文献DOI怎么找? 1556360
邀请新用户注册赠送积分活动 726516
科研通“疑难数据库(出版商)”最低求助积分说明 715853